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Motivation
• Public companies hold quarterly earnings 

conference calls 

• Investors attend and ask questions

• Important source of information

• Human investors have limited processing 
capacity and memory

• Might miss some key information
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Research question

• Can computers (i.e., Chat-GPT) help detect 
new information offered by management 
during Q&A sessions of quarterly calls? 

• “New information” => Information not discussed 
in management’s prepared remarks or in prior 
Q&A

• We train the computer to consider all information 
already in its corpus AND up-to-the minute 
information discussed earlier in the conference call
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Typical earnings conference call

• Presentation and discussion of financial 
results

• Overview of upcoming goals and milestones

• Discuss how plans may impact the future 
financial performance

• Open floor for Q&A
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Typical earnings conference call -- example
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What is AI (in our setting?) (1)*
• Artificial Intelligence: enables computers to simulate human 

intelligence and problem-solving capabilities

• Generative AI: uses machine learning (ML) to take raw data 
and “learns” to generate statistically probable outputs when 
prompted
• Encodes a simplified representation of training data and draws from it 

to create a new work similar, but not identical, to original data.

• Uses neural networks— a machine learning program, or 
model, that uses processes that mimic the way biological 
neurons work together to identify phenomena, weigh options 
and arrive at conclusions.

*https://www.ibm.com/topics/artificial-intelligence
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What is AI (in our setting?) (2)*
• Neural networks: have an input 

layer, a number of hidden 
layers, and an output layout.  
• Classic ML requires human 

intervention/supervision
• Uses human-labeled data to help 

predict outcomes

• Deep ML can be unsupervised
• Can ingest unstructured data in its raw 

form

• Deep ML has more hidden layers

• Reinforcement learning: 
• Computer learns by interacting with 

surroundings and getting feedback 
(rewards or penalties) for actions.

*https://www.ibm.com/topics/artificial-intelligence
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What is ChatGPT (3.5)?*
• Chat Generative Pre-Training Transformer 3.5: a natural 

language processing (NLP) model trained to produce text
• Statistically probable output = next word

• Uses Reinforcement Learning with Human Feedback (RLHF)
– uses human demonstrations and preference comparisons to guide the 

model toward desired behavior

– Trained on a massive corpus of text data, around 570GB of datasets, 
including web pages, books, and other sources

– ChatGPT uses a transformer neural network
• Understands relations between words, sentences, and concepts in text

• Can infer meaning, recognize patterns, and generate relevant and coherent responses 
based on the context provided in the conversation

– Updated through January 2022; not connected to Internet!!!

*https://decrypt.co/resources/what-is-chatgpt
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Context Preservation
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Related literature
• Li, Mai, Shen, Yang, and Zhang (2023) – corporate culture 

using ChatGPT

• Cao, Jiang, Wang, and Yang (2023) – can AI analyst beat 
human analysts

• Lopez-Lira and Tang (2023) – predict stock prices using 
ChatGPT

• Kim, Muhn, and Nikolaev (2023) – reduce the size of 
documents

• Eisfeldt, Schubert, Taska, and Zhang (2023) – labor 
implications

• Jha, Qian, Weber, and Yang (2023) – investment disclosure
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Key measure
• Q&A section of earnings conference call

• ChatGPT knows all general knowledge and 
conference-call specific knowledge up to 
question n

• Measure semantic similarity between human’s 
actual answer and ChatGPT answer

• (1 – Similarity is main independent measure) 

– HAID: Human-AI Discrepancy
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Using Chat GPT 3.5-Turbo
• Chat GPT 3.5-Turbo allows us to pre-educate the model 

with conference call transcript data up to the question 
of interest

• Sets the context of the information as a “conversation” 
so that we receive back an “answer.” 

• Three roles in this model: “system,” “assistant,” and 
“user.”

• We use a combination of “system” and “assistant” to 
preserve the context of the “conversation” 
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System (authors) role:

Two instructions to Chat GPT 3.5 turbo

1. From the perspective of a top executive, please 
answer the following question raised by a 
financial analyst during an earnings conference 
call 

2. knowledge cutoff date (important for avoiding 
forward-looking bias)
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Assistant role (executive) and user role 
(analyst)

INPUT:

1. (Assistant) executive presentation, summarized

2. (User) full set of preceding (n-1) analyst questions and 
(Assistant) corresponding executive answers 
– Analyst questions original text; executive answers summarized

3. (User) Analyst question n

OUTPUT:

(“Fake” Analyst/User): Answer to question n from Chat 
GPT
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Snapshot
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System input: our 

instructions

Assistant input: 

Executive 

presentation

User input: 

Analyst question

Assistant input: 

Executive 

answer

Fake 

user/analyst 

output: 

GPT 

answer



Summarizing presentation and 
executive answers

• ChatGPT 3.5-turbo has limit of 4,096 tokens 

– roughly 4,096*0.75=3,072 words

•  Out of necessity, we pre-process presentation and 
executive answers using BART

 BART: a denoising autoencoder for pretraining 
sequence-to-sequence model developed by 
Facebook AI in 2019 
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Case aimilar answers
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Case dissimilar answers

18

• Manager answer: The sequential, July was down 2.7%, and 
that compares to the 10-year average being a negative 2.1%. 
In August, it was plus 0.2% versus the long-term average of 
being 0.6%. And then September, that was what we talked 
about. It was up 7.3%, and the long-term average is a positive 
2.8%. We had that material increase in weight per shipment. 
And when you look at shipments, and I think I mentioned this 
before, shipments were pretty much in line with what normal 
seasonality was for the most part for the quarter. It was just 
that big step-up in weight per shipment that drove that 
weight change.

• Chatbot answer: We're very focused on that. Our IT group is 
focused on that. And we're making all every step we can to 
make that happen. Very, very focused on that right now.5/1/2024 Northeastern University DMSB Finance



Data & sample
• Sample period 2004 to 2020

• 190,538 conference call transcripts

• Compustat quarterly financial data; I/B/E/S 
analyst forecast and management guidance

• After dropping observations with missing firm-
level controls, final sample: 104,932 earnings 
conference calls.
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Key measure: HAID (Human-AI difference)
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HAID(Bert) HAID based on semantic similarity using the Bidirectional 

  Encoder Representations from Transformers (BERT) 

  developed by Google.

HAID(Cos) HAID based on cosine similarity of word distributions.

HAID(Word2Vec) HAID based on Word2Vec, a pre-trained embedding 

provided

  by Google. The pre-trained embeddings are available at

  https://code.google.com/archive/p/word2vec/

Bert:
• captures contextual meaning.
• Handles complex sentence structures and long-range dependencies 



Semantic similarity
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Semantic similarity:
 * distance between sentences or phrases based on the likeness of 
their meaning or semantic content as opposed to lexicographical 
similarity

Example of likeness of meaning without lexicographical similarity

Sentence 1: The cat ate the mouse

Sentence 2: The mouse was eaten by the kitten

These two sentences are semantically quite similar despite the rearrangement 

of subject and verb and use of kitten versus cat.



Summary statistics: key variables
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Variable Obs. Mean SD Median

HAID (Bert) 104,932 0.311 0.045 0.308

HAID (Cos) 104,932 0.472 0.060 0.473

HAID (Word2Vec) 104,932 0.118 0.024 0.115

Number of questions in 
Q&A session (log)

104,932 2.524 0.507 2.639

Number of sentences in 
transcript (log)

104,932 2.360 0.426 2.342

Number of analysts (log) 104,932 1.677 0.987 1.792



Correlations: key variables
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HAID (Bert) HAID (Cos)

HAID (Cos) 0.43

HAID (Word2Vec) 0.47 0.74



Testable hypothesis
• H1a: Higher HAID → higher abnormal trading 

volume and absolute cumulative return

 Rationale: higher HAID presumably 
contains potentially useful incremental 
information

• H1b: Higher HAID → higher stock liquidity

– (bid-ask spread and Amihud)
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Results for hypothesis 1a

25

All regs include firm Year-Quarter FE; SE clustered at Ind. Year-Qtr level
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Results for hypothesis 1b
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Testable hypothesis

• H2: Higher HAID → lower analyst error and 
analyst dispersion

• H3: Higher HAID → higher probability of 
managerial guidance
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Results for hypothesis 2
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Results for hypothesis 3

295/1/2024 Northeastern University DMSB Finance



Cross-sectional prediction
• Impact of HAID should be more pronounced 

for complex firms, or firms with more 
information asymmetry between 
management and investors
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Cross-sectional test results: AVol
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Cross-sectional test results: Abs. CAR
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Cross-sectional test results: Guidance
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Results using Alternative LLM
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Determinants of HAID (selected results)
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Controlling for Bushee’s measures 
of complexity 
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Conclusion 
• Provide novel large-scale evidence how LLMs 

can potentially help investors

• Propose a new measure to help uncover 
“hidden” information contained in manager 
responses

• Will be interesting to see how managers’ 
responses evolve over time
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To-do List 
• Understand better determinants of HAID – a 

more systematic decomposition

• Signed vs. unsigned 

38
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Thank you!
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Correlations

405/1/2024 Northeastern University DMSB Finance



Summary Statistics
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