

Reversals and the returns to liquidity provision

Wei Dai, Dimensional Fund Advisors Mamdouh Medhat, Dimensional Fund Advisors Robert Novy-Marx, Simon Business School and NBER Savina Rizova, Dimensional Fund Advisors

Short-run reversals

- Recent losers outperform recent winners
 - On average
- Well documented
 - Fama (1965), Roll (1984), Jegadeesh (1990), Lehmann (1990)
- Fairly weak outside microcaps
 - Modest spreads, marginal significance
 - Gotten weaker over time; **much** weaker post-decimalization

"The returns of short-term reversal strategies in equity markets can be interpreted as a proxy for the returns from liquidity provision"

□ Nagel, JF 2012

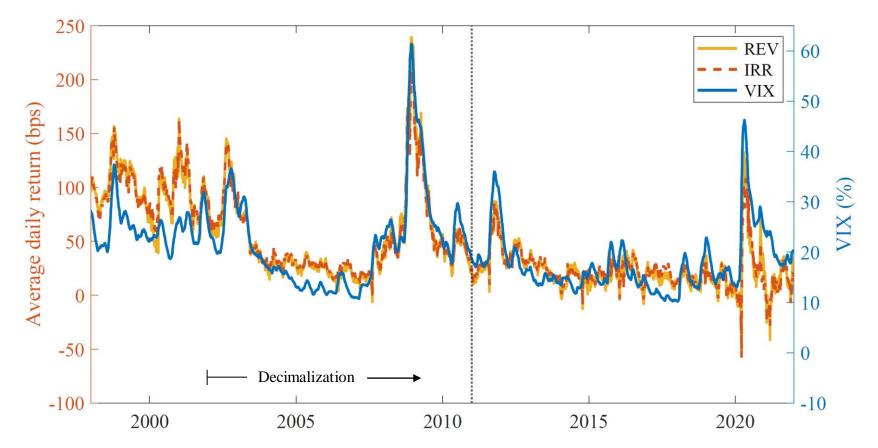
SIMON

ROCHESTER

BUSINES

SCHOOI

Basic intuition


- To accommodate sellers' demands...
 - ...Liquidity providers must buy
 - While selling pushes prices down
- Liquidity providers expect compensation
 - □ Unwind (sell) later for more (on average)
 - As liquidity replenished and prices recover
 - I.e., as "losers" rise

Evidence (Nagel 2012)

Trading more costly in volatile markets

 \Box So higher volatility \rightarrow more profitable reversals (on average)

Cross-sectional implications

- If reversals proxy for the returns to liquidity provision...
 - ... Then illiquidity differences **across stocks** should matter!
 - How should we even measure illiquidity?
 - □ It's a complicated, multi-dimensional concept
- Also, what aspect of reversal should we look at?
 - **•** Magnitudes, obviously
 - Also persistence!

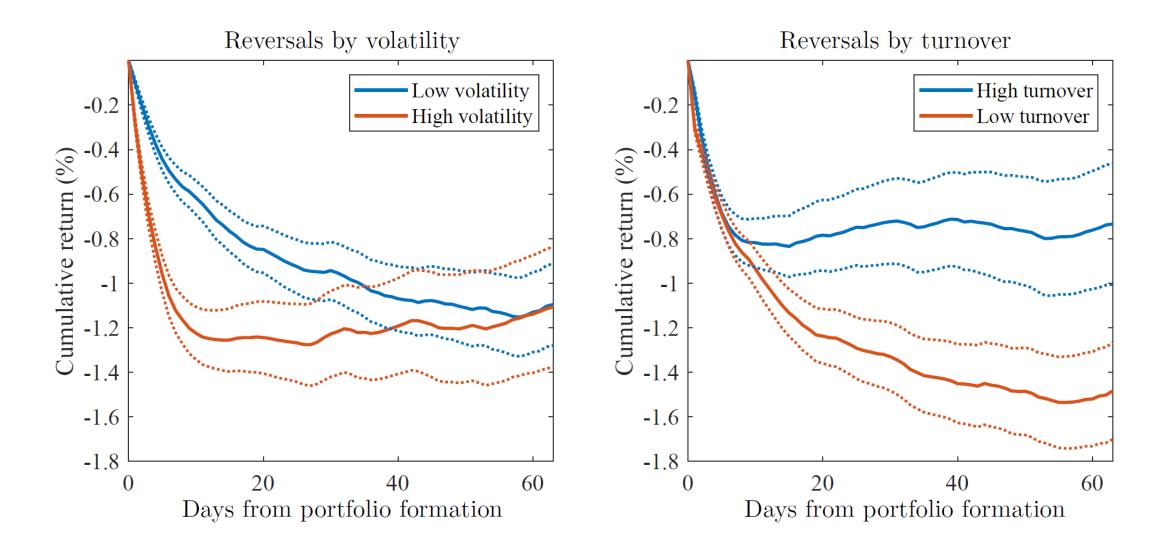
- Size (small stocks are less liquid)
- Volatility
 - Drives market maker **inventory risk**
 - Strongly correlated with t-costs
 - In both the cross-section and the time-series
- Turnover
 - Less liquidity should imply less trading
 - And longer inventory durations

These jointly explain **more than 96%** of the average cross-sectional variation in Amihud's illiquidity measure (JFM 2002)

- Easily implementable empirical estimation of Kyle's lambda measure of price-impact of trading (Econometrica 1985)
- Amihud is increasing with volatility, decreasing with size and turnover

- Reversals are bigger for micro-caps
 - □ Known…but surprisingly concentrated in the smallest stocks
- **Strong** among high-volatility stocks
 - □ Which expose MMs to more inventory risk
- Persistent for low-TO stocks
 - □ Where inventory durations are longer
 - Huge variation in persistence!
 - □ Should really think in "business" (or "trade") time, not calendar time!

WML spread from formation


SIMON

ROCHESTER SCHOOL

BUSINESS

.

(9)

Reversal refinement

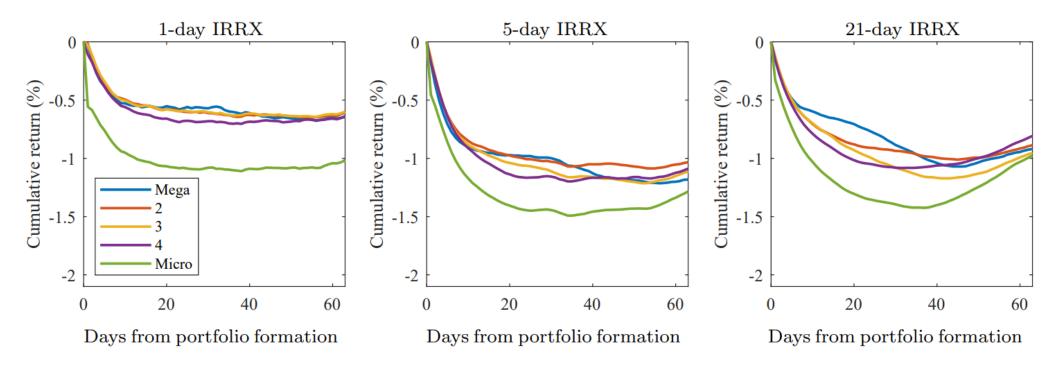
- Reversals as a lens to study liquidity
 - \square Theory: Price moves **unrelated** to news \rightarrow reversals
 - Price moves on news empirically associated with continuations
- Common reversals trade against news
 - News about firm fundamentals
 - Post-earning announcement drift (PEAD)
 - News about industries
 - Short-term industry momentum (IMOM)
 - □ These **greatly obscure** the strength of liquidity-driven reversals!

Reversal decomposition

Panel A: Strategy average monthly excess return $(\%)$								
REV	PEAD	IMOM	IRR	IRRX				
$ \begin{array}{c} 0.31 \\ [1.68] \end{array} $	0.53 [5.45]	0.68 [3.57]	0.74 [5.40]	1.08 [9.35]				
Panel B: Results from $\text{REV}_t = \alpha + \beta_{\text{IRRX}} \text{IRRX}_t + \beta_{\text{PEAD}} \text{PEAD}_t + \beta_{\text{IMOM}} \text{IMOM}_t + \epsilon_t$								
α	β_{IRRX}	$\beta_{\rm PEAD}$	β_{IMOM}	Adj. R^2 (%)				
0.13 [1.73]	0.76 [27.8]	-0.54 [-17.4]	-0.53 [-30.4]	87.0				

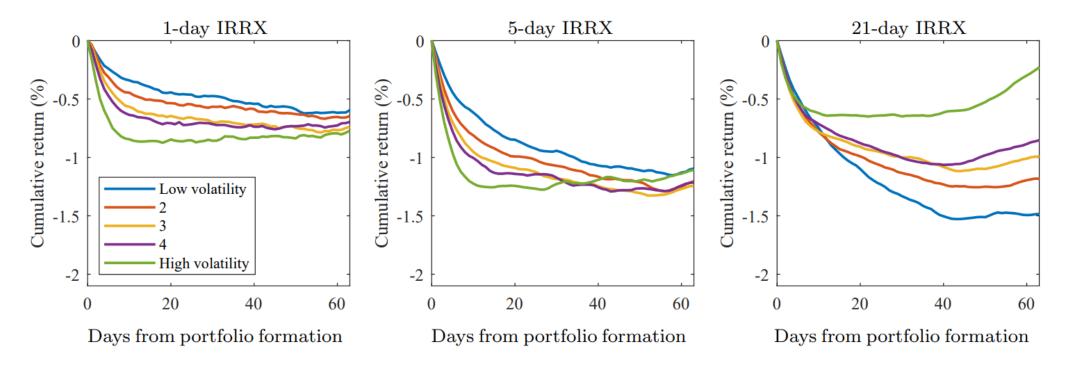
• We mostly use IRRX

• Results robust to using REV


Illiquidity and reversals

- How do reversals vary with different aspects of illiquidity?
 - Average performance evolution over time
 - From portfolio formation
- Illiquidity measured using size, volatility, and turnover
 - □ Look at 1-day, 5-day, and 21-day past performance
 - I will focus mostly on 5-day past performance here
 - □ 1-day has clean interpretation, but results are noisy...
 - \square ...21-day is least noisy, but interpretation is harder

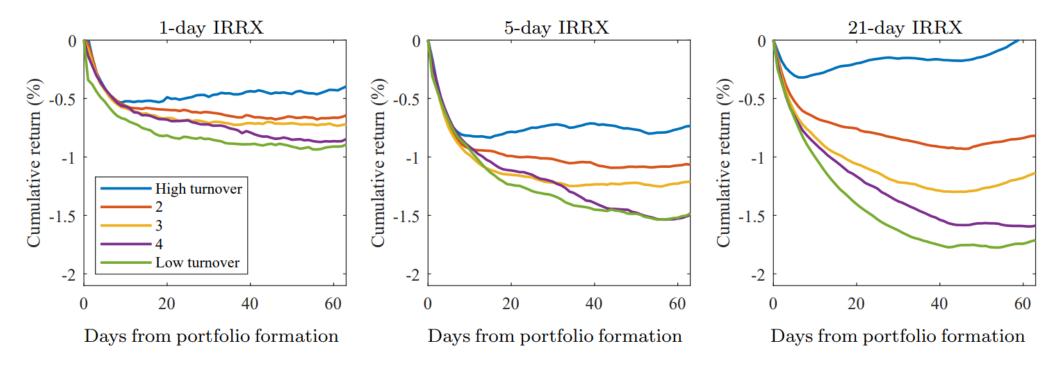
Average WML spread from formation



Only stronger for microcaps (bottom ~3% of the market by cap.)
Limited market-making

Reversals by volatility

Average WML spread from formation



- □ High volatility associated w/ stronger, initially faster revs
 - More volatility \rightarrow greater inventory risk

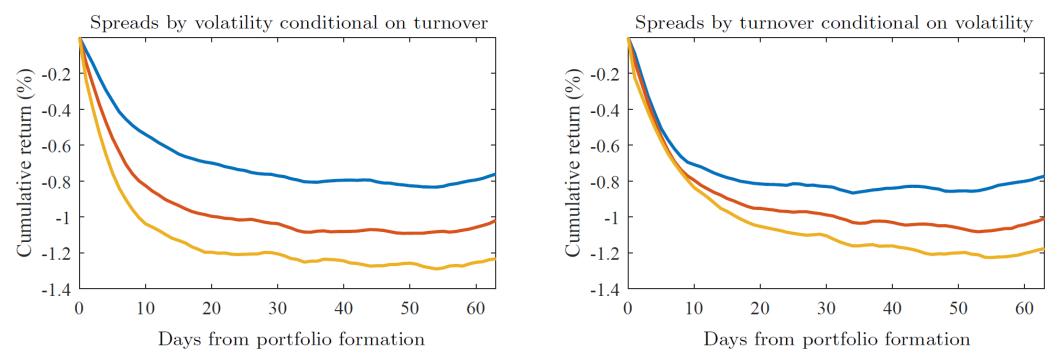
Reversals by turnover

Average WML spread from formation

 \Box Low TO \rightarrow longer-lived, more persistent reversals

• Less turnover \rightarrow longer inventory durations

Should really "hold all else equal"

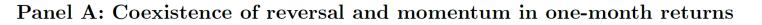

- When studying impact of one aspect of illiquidity...
 - ... Should control for other aspects
 - Our measures are correlated
 - □ Volatility and turnover are positively correlated
 - □ Small stocks tend to be more volatile and trade less
- Use propensity-matched sorting procedure (N-M 2015)
 Within each of the three FF (2016) size universes...
 - ... Match on either volatility or turnover
 - Sort on the other

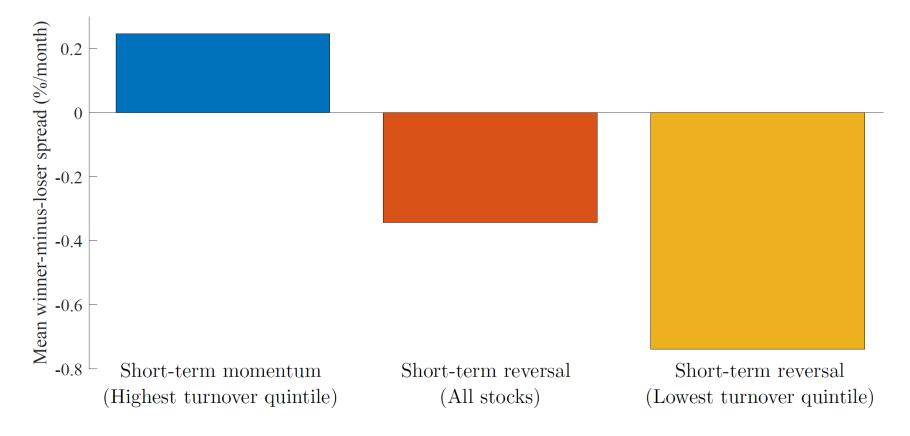
SIMON **Results with controls BUSINESS** ROCHESTER SCHOOL

Consistent (even cleaner) results □ Though less variation in past performance

(9)

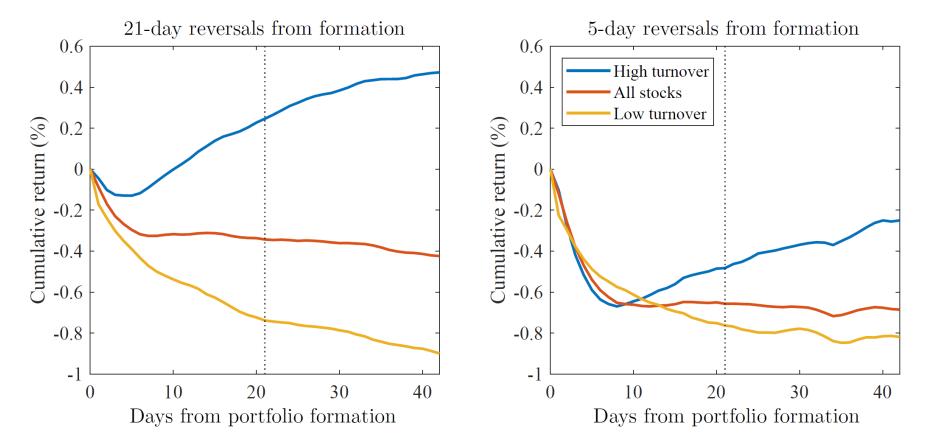
Panel B: Small cap conditional winner-minus-loser spreads by volatility (left) and turnover (right)


Implications


- These patters explain several results in the literature
 Connecting results that were seemingly unrelated
- Yield different, more nuanced interpretations of these older results
 - Some of which are very different from the current common understanding

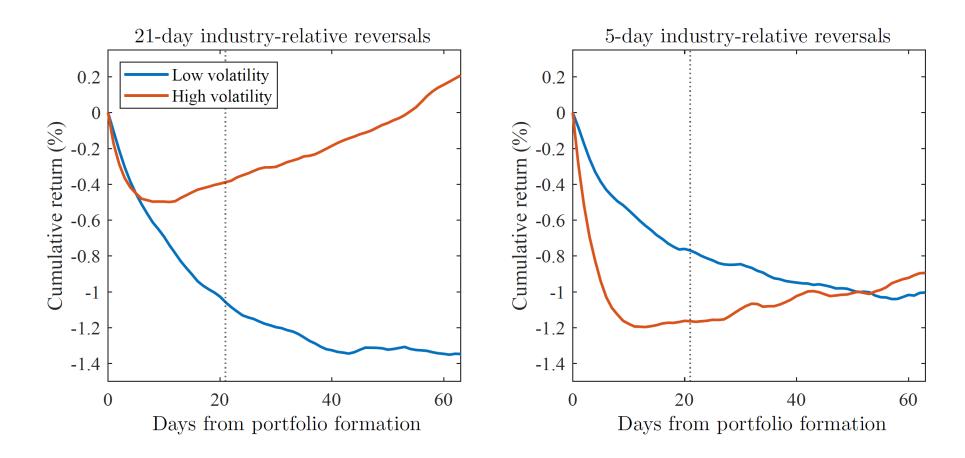
Related results I

Medhat and Schmeling (RFS 2022)



Really just reversal persistence...

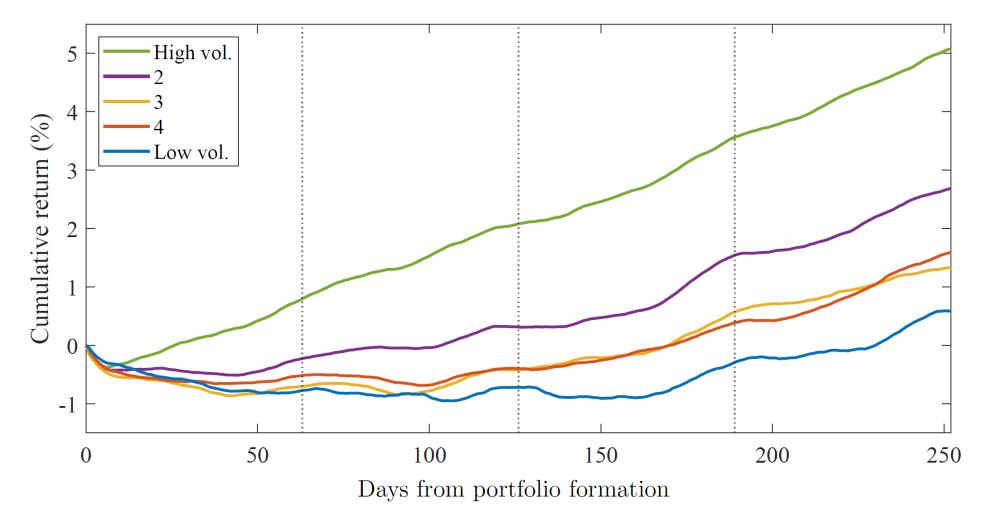
Panel B: Reversal performance from formation by turnover


Also related results of Avramov, Chordia, and Goyal (2006)

- Novy-Marx and Velikov (2016)
 - Strong 1-month industry-relative reversals among lowvolatility stocks
 - Much stronger than in high-volatility
 - □ Surprising because they are more liquid and cheaper to trade
- Kozak, Nagel, and Santosh (2020)
 - Low-volatility IRRs: Single most important anomaly for an SDF identified by machine learning techniques

Frequency mis-match...

One-month horizon is too long for the high-vol. IRR
 Which are actually much stronger (a complete misunderstanding)!


Related results III

- Arena, Haggard, and Yan (2008)
 - Momentum stronger for high-volatility stocks
- Novy-Marx (2012)
 - Momentum primarily driven by intermediate horizon past performance...
 - I.e., by stock returns over the **first half** of the preceding year
 - ...Not recent past performance
 - Stock returns over the last six months matters much less

Long-run WML spreads

Based on 1-month past stock performance

Connection/refinement

- Figure suggests results of Novy-Marx (2012) should be concentrated in low volatility stocks
 - Where the reversal is persistent
- For low vol., no MOM for ~6 months
 - □ So large difference in short- and intermediate-horizon MOM
- For high vol., MOM almost right away
 - □ So little difference in short- and intermediate-horizon MOM
 - More generally, disparity should be decreasing with volatility

Differences by volatility

		NYSE volatility quintile					
	All	Low	2	3	4	High	H-L
$MOM_{12,7}$	$0.87 \\ [4.57]$	$0.68 \\ [3.54]$	$0.77 \\ [4.01]$	$0.73 \\ [3.68]$	$1.01 \\ [4.32]$	$0.96 \\ [4.59]$	0.28 [1.16]
$MOM_{6,2}$	$0.22 \\ [1.03]$	-0.30 [-1.10]	-0.25 [-1.18]	$\begin{array}{c} 0.14 \\ [0.57] \end{array}$	$0.49 \\ [2.01]$	$1.17 \\ [5.07]$	$1.48 \\ [4.66]$
Diff.	0.65 [2.86]	0.98 [3.06]	1.02 [3.80]	0.60 [2.11]	0.53 [1.92]	-0.21 [-0.89]	-1.20 [-3.27]

Unconditional difference in Novy-Marx (2012) driven by low-volatility stocks
 Strong short-run momentum among high vol. stocks, but not among low vol. stocks

- Understanding liquidity Better execution
 - Don't demand liquidity when it's particularly expensive

Duh!

Simple implementation: IRRX screens

- Delay some underlying strategy's trades if they would trade against IRRX
 - Can illustrate basic idea using several simple common underlying base strategies

IRRX screens

- Yields a small exposure to IRRX
 - □ At negative costs!
 - Exposure and cost reduction increasing in underlying strategy's TO
 - □ Illustrate using relatively low turnover strategies
 - That already employ TO mitigation techniques (buy/hold spreads)
 So modest (but robust) results
- A lot more work can be done here!
 - □ Should exploit differences in reversal persistence
 - Can employ "accelerators" as well as screens

Gains from IRR screens

	Annualized compound net excess return (%/year)	Gains from IRRX Screen (bps/year)		Gains from REV Screen (bps/year)			
Portfolio		Net	Gross	T-Costs	Net	Gross	T-Costs
Big	7.44	3.06	2.98	0.08	2.22	1.94	0.28
		[2.01]	[1.91]	[1.46]	[1.11]	[0.94]	[4.05]
Small	9.25	3.76	3.32	0.43	-1.49	-2.80	1.31
		[1.24]	[1.10]	[3.01]	[-0.71]	[-1.32]	[4.00]
Growth	7.19	24.17	23.31	0.87	11.40	8.33	3.07
		[3.60]	[3.44]	[2.67]	[1.33]	[0.96]	[8.07]
Value	8.99	35.69	32.73	2.96	-3.50	-8.72	5.22
		[2.16]	[1.95]	[2.96]	[-0.37]	[-0.92]	[4.52]
Robust Profitability	9.90	7.15	4.84	3.39	1.68	-1.90	4.55
		[0.93]	[0.65]	[1.46]	[0.24]	[-0.28]	[1.94]
Conservative Investment	8.99	66.60	62.53	4.07	42.67	39.93	2.74
		[3.35]	[3.10]	[2.50]	[1.62]	[1.50]	[1.15]
Momentum Winners	9.51	50.81	40.26	10.55	79.13	80.87	-1.74
		[1.95]	[1.53]	[6.42]	[2.58]	[2.60]	[-0.78]

- Cross-sectional implications of illiquidity on the returns to liquidity provision
 - \Box Micro-cap stocks \rightarrow Stronger reversals
 - □ High volatility stocks → Strong initial reversals
 - \Box Low turnover stocks \rightarrow Long-lived reversals
 - These three illiquidity variables capture basically all the crosssectional variation in Amihud's (2002) popular illiquidity measure

- Accounting for this large predictable variation in reversal **magnitudes** and **persistence**:
 - Helps explain seemingly disparate results in the literature on reversals and momentum
 - Importance of looking at phenomena at the **appropriate frequency**
 - □ Should **reduce the cost** of demanding liquidity
 - And increase the compensation for providing it!

Conclusion

- Commonly constructed reversals greatly attenuated by trading against two news-related effects
 - Post-earnings-announcement drift
 - Industry momentum
- Basic results all hold beyond the US