The Implied Equity Premium

Paul Tetlock, Jack McCoy, and Neel Shah

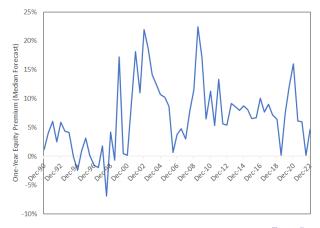
Columbia

May 2024

Tetlock (Columbia)

Implied Equity Premium

May 2024


-

• Equity premium: expected return on stocks versus risk-free Treasuries

- Historical US premium since 1871: average $\approx 5\%$; volatility $\approx 18\%$
- Compensates for higher risk of stocks relative to gov't bonds
- The equity premium is important for the real economy and markets
 - Affects wealth and consumption (Di Maggio et al. (2020))
 - Affects real investment (Baker et al. (2003))
- The equity premium seems to vary a lot Intuition
 - Economic risk and investor risk aversion vary
 - Behavioral biases also could drive variation

Estimating the Equity Premium: Surveys Models

- Do economists know and agree on the (one-year) equity premium?
 - Dispersion of 6.2% in estimates in Dec 2021 (Livingston survey)
 - Average value of 6.8% (std dev of 6.0%) from 1990 to 2022

A New Approach to Finding Risk Premiums

- Learn as much as we can from market prices
 - Observe prices of stock index, options, and bond
 - Prices reveal how much investors dislike risk
 - Stock index return variance reveals the amount of risk
- Analyze well-developed (e.g., US) markets with informative prices
 - Frictionless: no arbitrage in stock index, options, and bond
 - Complete: securities enable trading any stock index event
 - S&P 500 index and options markets are the natural setting

Risk Premiums in Frictionless Markets

$$\mathbb{E}_{t}\tilde{R}_{T} = \mathbb{E}_{t}\left[\frac{M_{T}}{\mathbb{E}_{t}M_{T}}\frac{\mathbb{E}_{t}M_{T}}{M_{T}}\tilde{R}_{T}\right] = R_{f,t}^{-1}\mathbb{E}_{t}^{*}\left[M_{T}^{-1}\tilde{R}_{T}\right]$$
$$= R_{f,t}^{-1}\mathbb{E}_{t}^{*}\left[\left[R_{f,t} + \sum_{k=1}^{\infty} w_{k,t}\left(\tilde{R}_{m,T}^{k} - \mathbb{E}_{t}^{*}\tilde{R}_{m,T}^{k}\right)\right]\tilde{R}_{T}\right]$$

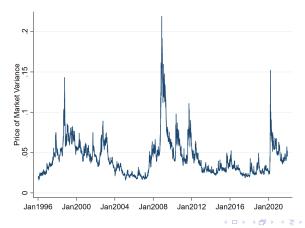
- \mathbb{E}_t^* : risk-neutral expectation at time t
- $\tilde{R}_{m,T}$: excess market return at time T > t
- $M_T > 0$: pricing kernel in frictionless markets
- Use growth-optimal portfolio return for M_{T}^{-1} in last equation

Risk premiums are weighted sums of risk prices (from index options)

$$EqPrem = w_1 PrcVar + w_2 PrcSkew + ...$$

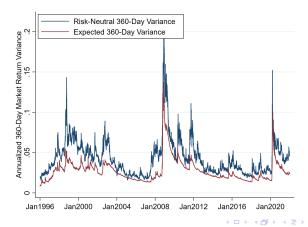
 $VarPrem = w_1 PrcSkew + w_2 PrcKurt + ...$

• Weights, w_k , are those in a growth-optimal portfolio

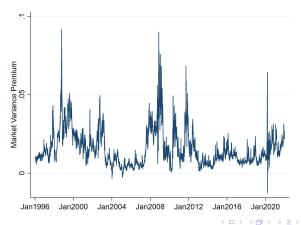

- Optimal for a price-taking, rational, log utility investor
- · Coefficients in regression of variance premium on risk prices
- Behavioral investors hold the rest of asset supply (not w_k)
- Equity premium varies with shifts in risks, preferences, and beliefs

Preview of Main Empirical Results

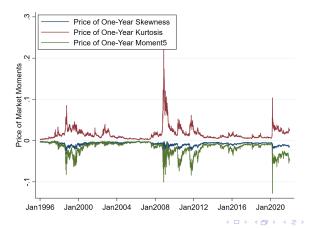
- Growth-optimal weights are not $w_1 = 1$, and $w_k = 0$ for $k \ge 2$
 - Stock weight is $w_1 > 1$; and it increases after 2008
 - Variance and skew weights are negative: $w_2 < 0, w_3 < 0$
- Equity premium predicts realized excess stock returns well
 - Annual $R^2 > 9\%$ vs. < 1% for representative log utility
 - $\bullet\,$ Gain of 13% in expected returns for a log utility investor
- Predicted variance premium tracks expected variance premium
- Predictions work best in frictionless markets-e.g., not Sept '08


Price of Market Variance Risk In Complete Markets

- Price of squared returns reveals the price of market variance
- It is roughly the square of the popular volatility index (VIX)
- Ranges from 0.015 to 0.21, implying price of volatility is 12% to 46%


The Price of Variance versus Expected Variance

- Estimate long-term variance from daily realized variance
- Compare to price of variance: difference is variance premium
- Expected variance is correlated 0.9 with price of variance


The Expected Variance Premium Is Positive

- Investors usually pay 1% or 2% to hedge variance risk
- Increased variance is associated with negative market returns
- Variance hedging insures against market declines

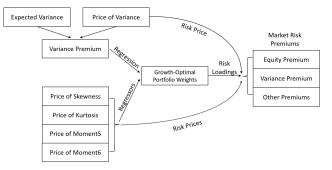
Options Price Skewness, Kurtosis, and More

- Odd (even) moments are negative (positive)
- All moments increase in magnitude in crises
- Investors pay to hedge market skewness (crashes)

- Options price all stock market risks in complete markets
 - Variance, skewness, kurtosis, and more
 - They enable investors to trade all market risks
- High-frequency returns reveal stock market variance
- Price of variance is at a premium over actual variance

12 / 29

Complete Markets and Information from Prices


- Prices are highly informative in complete markets
 - They reveal all moment prices and the variance premium

EL SQA

Frictionless Markets Simplify Risk Premiums

- In frictionless markets, the reciprocal of the growth-optimal portfolio return prices all assets (Long (1990))
 - Pricing kernel comes from FOC of hypothetical log utility investor

Theory: Pricing Market-Related Securities

• In complete, frictionless markets, the pricing kernel is the reciprocal of the growth-optimal portfolio return:

$$M_T = \left[R_{f,t} + \sum_{k=1}^{\infty} w_{k,t} \left(\tilde{R}_{m,T}^k - \mathbb{E}_t^* \tilde{R}_{m,T}^k \right) \right]^{-1}$$

- Apply kernel to excess returns, $\tilde{R}^k_{m,T} \mathbb{E}^*_t \tilde{R}^k_{m,T}$, to find risk premiums
 - Apply to stocks (k = 1) to get the equity premium:

$$\mathbb{E}_t \tilde{R}_{m,T} = R_{f,t}^{-1} \sum_{k=1}^{\infty} w_{k,t} \mathbb{E}_t^* \tilde{R}_{m,T}^{k+1}$$

• Apply to variance derivatives (k = 2) to get the variance premium:

$$\mathbb{E}_{t}^{*}\tilde{R}_{m,T}^{2} - \mathbb{E}_{t}\tilde{R}_{m,T}^{2} = -R_{f,t}^{-1}\sum_{k=1}^{\infty} w_{k,t} \left(\mathbb{E}_{t}^{*}\tilde{R}_{m,T}^{k+2} - \mathbb{E}_{t}^{*}\tilde{R}_{m,T}^{k}\mathbb{E}_{t}^{*}\tilde{R}_{m,T}^{2}\right)$$
Premium Intuition or Interpretation

Tetlock (Columbia)

May 2024

Estimating Growth-Optimal Weights

 Approximate the pricing kernel as the reciprocal of the growth-optimal portfolio return based on K = 4 securities:

$$M_{T} \approx \left[R_{f,t} + \sum_{k=1}^{4} w_{k,t} \left(\tilde{R}_{m,T}^{k} - \mathbb{E}_{t}^{*} \tilde{R}_{m,T}^{k} \right) \right]^{-1}$$

• The variance premium depends on four risk-neutral moments

$$\mathbb{E}_t^* \tilde{R}_{m,T}^2 - \mathbb{E}_t \tilde{R}_{m,T}^2 = -R_{f,t}^{-1} \sum_{k=1}^4 w_{k,t} \left(\mathbb{E}_t^* \tilde{R}_{m,T}^{k+2} - \mathbb{E}_t^* \tilde{R}_{m,T}^k \mathbb{E}_t^* \tilde{R}_{m,T}^2 \right)$$

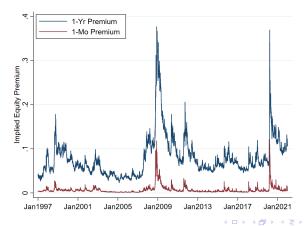
• Estimate w₁, w₂, w₃, w₄ using rolling linear regressions

Growth-Optimal Weights as Regression Coefficients

• Time-series regression of variance premium on prices of moments

- Coefficients are growth-optimal weights on stocks, variance, etc.
- Empirical regressions encounter practical issues Reg Eqn
 - Rolling: Allow for time-varying optimal weights
 - Approximation: Use only four prices of moments: k + 2 = 3, 4, 5, 6
 - Heteroskedasticity: Use precision weights

Empirical Growth-Optimal Portfolio Weights


- Stock weight: positive (usually > 1) to earn equity premium
- Variance weight: negative to earn variance premium
- Skewness weight: negative to hedge against crashes

- Rational agents hold the growth-optimal portfolio: $w_{k,t}$, k = 1, 2, 3, 4
- Rational agents must hold assets that behavioral agents won't
 - Markets clear in equilibrium
- Rational agents buy assets that behavioral agents sell
 - If behavioral agents sell stocks, $w_{1,t} \uparrow$ and equity premium \uparrow
 - If they increase variance hedging, $w_{2,t}\downarrow$ and equity premium \uparrow
 - Price impact depends on prices of variance and skewness risks

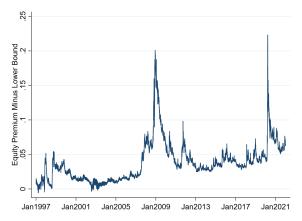
Implied Equity Premium Over Time

- The equity premium is highly countercyclical
- It's also persistently higher after the 2008 crisis
- 0.85 correlation between monthly and yearly premiums

Tetlock (Columbia)

May 2024

Implied Equity Premium vs. Lower Bound on Premium


- 0.82 correlation between implied equity premium and lower bound on premium from log utility (Martin (2017))
- On 99.6% of days, implied equity premium > lower bound

21 / 29

Difference between Premium and Lower Bound

- \bullet Difference ranges from 0% to 22% per year
- Difference is much higher after the 2008 crisis

Tetlock (Columbia)

May 2024

- The implied equity premium forecasts returns well
 - $\bullet\,$ Annual out-of-sample ${\it R}^2\approx9\%$ vs. <1% for benchmark
 - Expected returns increase by 13% per year for log utility investor
- The model forecasts the expected variance premium very well
 - Annual out-of-sample $R^2 \approx 70\%$ vs. 5% for benchmark

The Implied Equity Premium Predicts Market Returns

- Evaluate predictions at horizons from 30 to 360 days
- Annual out-of-sample R^2 values imply $\mathbb{E}R \uparrow$ by 13% per year
- Monthly R^2 value implies $\mathbb{E}R \uparrow$ by 14% per year

Out-of-sample R ² Values						
Horizon	Benchmark Premium	Implied Premium	Obs			
30	0.58	1.12	303			
60	1.00	2.23	151			
90	0.99	3.04	100			
180	1.81	8.74	50			
360	-1.29	9.15	24			

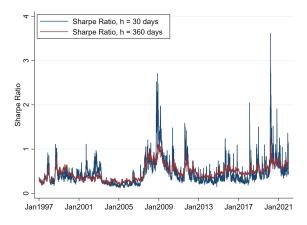
Return Prediction Regressions for 180-Day Horizon

- Regress equity premium (EP) on implied equity premium (IEP)
 - Controls: variance premium (VP) and rep log util eq prem (RLUEP)
- "No Arb" sample excludes 61 days during 2008 crisis

	EP_{180}	EP_{180}	EP_{180}	EP_{180}	EP_{180}	EP ₁₈₀
IEP_{180}	1.03**	1.25	1.43**	1.46***	1.54	2.00***
	(0.48)	(1.43)	(0.58)	(0.42)	(1.38)	(0.48)
$RLUEP_{180}$		-0.54			-0.21	
		(2.81)			(2.84)	
<i>VP</i> ₁₈₀		()	-1.18		()	-1.53
100			(1.26)			(1.33)
Observations	6,167	6,167	6,167	6,106	6,106	6,106
Sample	All	All	All	No Arb	No Arb	No Arb
R_{adj}^2	0.080	0.081	0.089	0.122	0.122	0.136

25 / 29

Variance Premium Predictions


• Model with growth-optimal weights beats log utility weights

- IVP: Implied variance premium
- RLUVP: Rep log util variance premium

Out-of-sample <i>R</i> ² Values							
Horizon	RLUVP	IVP	Days				
30	6.0	62.3	6293				
60	6.6	70.0	6293				
90	3.3	70.5	6293				
180	-7.4	70.1	6293				
360	-25.9	55.5	6293				

Sharpe Ratio Is Countercylical

- Highly countercyclical Sharpe ratio at all horizons
- Modest range from 1st to 99th percentile: 0.22 to 0.97

A New Framework for Estimating Risk Premiums

- Estimate "implied" equity premium imposing minimal structure
 - Data: option prices and high-frequency stock returns
 - Assumptions: frictionless, complete index and index option markets and approximation of true growth-optimal portfolio
 - Estimation: accurate variance forecasts and short-run stability of growth-optimal portfolio weights
- What is not assumed?
 - Anything else about the economy—e.g., wealth, constraints, etc.
 - Anything else about investor preferences, beliefs, or heterogeneity
 - Stationarity and long-run model stability

• The implied risk premium framework is useful

- Predicts stock market returns well
- Offers new insights into the economy and markets
- Improved cost of capital estimates have myriad applications
 - Improving business and policy decisions
 - Predicting economic growth
- Ongoing work: stock price impact of behavioral biases
- Ongoing work: apply this framework to individual stocks

Extra Slides

• • • • • • • •

▲ 王 ▶ 王 = ● ○ ○ ○

The Equity Premium and Stock Prices

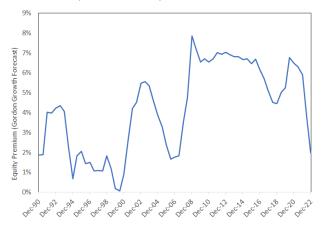
- Suppose a stock will soon pay a random dividend: D
 - $\bullet\,$ Log dividend is normal with volatility σ
 - A safe bond pays a return of $r_f \ge 0$

• Investors value the stock at a price of $\mathbb{E}D/\left(1+r_f+\gamma\sigma^2
ight)$

- Investors like higher mean, $\mathbb{E} D$, but dislike variance, σ^2
- ${\, {\rm \bullet}\,}$ Risk aversion, $\gamma,$ is how much they dislike variance
- The equity premium over the risk-free rate, $r_{\rm f}$, is $\gamma\sigma^2$
 - Risk aversion and amount of risk determine the equity premium
 - A higher equity premium implies lower stock prices

Back to Intro

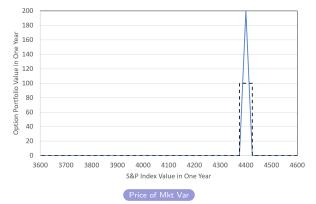
Estimating the Equity Premium: Models


- Economists estimate the premium under strong assumptions (History)
 - Stylized economies: Constant dividend growth
 - Stationarity and model stability: Predictive regressions and VARs
 - Rational stock analyst beliefs: Implied cost of capital
 - Preference assumptions: Risk aversion known, fixed, or bounded
- But these models don't forecast stock returns well
 - Most models' forecasts flunk "out of sample" tests
 - Goyal and Welch (2008, 2021)
 - A few simple models outperform constant premium benchmark
 - Campbell and Thompson (2008)

3/10

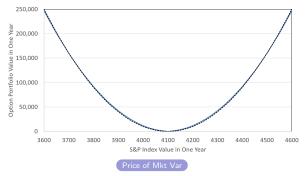
Stylized Long-Run Equity Premium Estimates

- Long-run equity premium with constant (5%) dividend growth
 - Premium = Div Growth + Div Yield Risk-free Rate
 - Average 4.2% (Std Dev 2.2%) from 1990 to 2022 Back to Surveys



- Historical average stock return is an unbiased estimate
 - Average dividend is $\mathbb{E}D$, so average premium is $\gamma\sigma^2~(\approx 5\%)$
 - But standard error is large because returns are very volatile ($\approx 18\%)$
- The true equity premium varies—e.g., because γ (preferences) vary
 - So we can't tell whether and when historical returns are relevant

Back to Equity Premium Models


Complete Market: Option Prices Reveal State Prices

- Butterfly spread prices market payoffs in a range (e.g., 4375–4425)
 - Complete market: options with all strikes, K, are available
 - Spread with strikes K^-, K, K^+ reveals risk-neutral probability of K

Option Portfolios Reveal Prices of Return Moments

- Option portfolios span any function of stock market returns
 - $\bullet\,$ E.g., squared stock payoff $\approx\,$ sum of OTM puts and calls
 - Piecewise linear approximation is accurate with tradable options

Expected Long-Term Variance

- Expected *T*-day variance comes from intraday stock return variance
- Estimated daily realized variance, *rv_t*, is the key input
 - rv_t is sum of squared log SPY returns over 78 intervals
 - *rv_t* is subsample averaged over 10 staggered sets of 78 intervals based on 790 SPY prices equally spaced in transaction time
 - Procedure follows Patton and Sheppard (2015) and predecessors
- Expected *T*-day variance is the real-time (rolling) forecast from *t* + 1 to *t* + *T* from an ARFIMA(0,*d*,0) model, where 0 ≤ *d* ≤ 0.5:

$$(1-L)^{d} rv_{t} = \epsilon_{t},$$

$$rv_{t} = (1-L)^{-d} \epsilon_{t},$$

Back to Variance Premium

- All market-related risk premiums are weighted sums of the prices of higher-order market moments
 - Equity risk premium is a weighted sum of the prices of market variance, skewness, and more
 - Variance risk premium is a weighted sum of the prices of market skewness, kurtosis, and more
- The weights, w_k, are the same for all risk premiums
 - They are the **growth-optimal** portfolio allocations to stocks (*w*₁), variance (*w*₂), skewness (*w*₃), and so on (*w*₄,...)
 - Representative log utility is a benchmark
 - Stock weight is w_1 (100%); all others are zero ($w_2, ... = 0$)

Back to Risk Prem Eqn

Intuition for the Implied Equity Premium

- Frictionless, complete markets for the index and its options are key
- The growth-optimal kernel prices the index and all its options
 - So the equity and variance risk premiums exhibit analogous dependence on the prices of all market risks
- The relation between the (observable) variance premium and prices of market risks reveals weights in the growth-optimal kernel
 - Apply these weights to prices of risk to find the equity premium
 - This equity premium is implied by index and option prices

Back to Risk Prem Eqn