
Discount‐Rate Risk in Private Equity: Evidence from Secondary Market Transactions 

BRIAN BOYER, TAYLOR D. NADAULD, KEITH P. VORKINK, and MICHAEL S. WEISBACH 

Statement of Relevance to the Q-Group Mission 

In recent decades, private equity (PE) has become an important asset class for investors. In the early 2000s, a secondary 
market developed in which limited partners (LPs) can transact their stakes in private equity funds.  Since data on secondary 
market prices are not publicly available, however, investors and academics have been limited to using data on cash-flows 
to evaluate the risk and return of private equity. As much as half of the variation for public equity returns, however, is driven 
by news about discount rates rather than cash flows (Campbell (1991)).  In this paper we develop a private-equity index 
based on secondary market transaction prices using a proprietary dataset from one of the largest brokers of private equity 
secondary market transactions in the world.  Using this index, we compare standard measures of investment performance 
with cash-flow based measures of performance developed for private equity and explain why they lead to different 
conclusions. Empirically, we find that cash-flow based measures of performance are large and positive for firms in our 
index. The CAPM alpha, however, is insignificant from zero.  Measures of private equity performance based on cash flows 
do not account for a discount-rate risk premium that is a component of CAPM alpha.  NAVs are also too smooth because 
they fail to reflect variation in market discount rates.      

The results of our paper will help investment managers perform their fundament role of optimally allocating capital and are, 
therefore, directly relevant to the Q-group mission: the advancement of the global practice of investment management.  In 
reality, all LPs may access PE secondary markets but face costs and constraints that prevent them from doing so.  It is 
similarly common for investors who buy corporate bonds to avoid trading in secondary markets and collect the coupons.  
Many bond investors, however, dynamically optimize and rebalance their portfolios in markets for credit and interest-rate 
swaps, which are facilitated by the existence of secondary market prices for bonds. Just as the factor exposures of coupon 
payments do not capture the full risk exposure of bond investors, the factor exposures of PE cash flows do not capture the 
full risk exposure of PE investors.  There exist states of the world in which even self-proclaimed “buy-and-hold” investors 
will find it optimal to engage in PE secondary markets, as we observed during the financial crisis (e.g., Miller and Fabrikant 
(2008)).  Below we provide a time-series chart of our market-based PE indices and other prominent market, and NAV-based 
indices.  
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In recent decades, private equity (PE) has become an important asset class for investors.  A recent survey 

of institutional investors finds that 88% are invested in private equity, with nearly a third having an 

allocation greater than 10% (Whyte (2017)).  In the early 2000s, a secondary market developed in which 

limited partners (LPs) can transact their stakes in private equity funds.1 Since data on secondary market 

prices are not publicly available, investors and academics have been limited to using data on cash-flows to 

evaluate the risk and return of private equity. As much as half of the variation for public equity returns, 

however, is driven by news about discount rates (Campbell (1991).  Further, all variation in dividend price 

ratios for public equity corresponds to news about discount rates rather than news about cash flows 

(Campbell and Shiller (1988), Cochrane (2011)). These empirical facts for public equity naturally lead to 

two questions about private equity investments that we address in this paper. First, exactly how might 

discount-rate risk create disparity between cash-flow-based measures of investment performance and 

standard measures, such as CAPM alpha? Second, to what extent does discount-rate risk in private equity 

generate a meaningful empirical difference between the two types of investment performance measures? 

To answer the first question, we derive the relation between the generalized public market 

equivalent (GPME) of Korteweg and Nagel (2016) and alpha when both are measured relative to the same 

stochastic discount factor (SDF).  We show that alpha accounts for a discount-rate risk premium that 

separates the two measures.  One way to understand the difference between alpha and GPME is to note that 

alpha characterizes risk in terms of a total-return beta, while GPME characterizes risk in terms of cash-

flow-yield betas that ignore any covariation between the SDF and market prices, or discount rates.   

  We then turn to the second question to investigate the extent to which discount-rate risk in private 

equity creates a meaningful empirical difference between GPME and CAPM alpha. To do so we use data 

obtained from a large intermediary to construct market-based indices for buyout funds that enable us to 

measure the CAPM alpha of private equity. In contrast to much of the existing literature that investigates 

 
1 While secondary market liquidity was limited in the nascent years of the secondary market, liquidity has grown 

substantially over the past decade. 
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PE performance using cash flows, our alpha estimates suggest that buyout funds do not outperform public 

markets on a risk-adjusted basis.2   

 In constructing our PE indices we carefully address the potential problem of sample selection. For 

our defined universe of funds, no fund trades in every period, and many funds do not trade at all. Moreover, 

funds that do trade are not likely to be randomly chosen.  In the subsample of funds that could be matched 

with cash flow data from the Preqin database, there are 839 buyout transactions for 287 unique funds from 

2006 through 2018, implying that the average fund trades 2.9 times in our sample, conditional on trading 

at all. We explicitly account for the possibility that specific types of funds may trade more often than others 

by using the approach of Heckman (1979) and estimate the parameters of an econometric model using 

observed transaction prices. We use this model each period to create an inferred price for every fund in our 

defined population every period, including those that do not transact. We then construct our transactions-

based index from these inferred prices.3  When estimating index parameters, we account for non-

synchronicity in prices using the approach of Dimson (1979).   

We estimate the total-return beta of our main secondary market PE index to be 1.79. As emphasized 

by Axelson, Sorensen and Strömberg (2014), the return on a buyout fund is essentially the return on a 

portfolio of highly levered firms. If the portfolio firms prior to the buyout have unlevered betas around 1.0, 

doubling their leverage, as was typically done in buyouts during our sample period should lead to a portfolio 

beta of around 2.0.4  The benchmark beta of 1.0 in this calculation is a total-return beta, in contrast to the 

cash-flow-yield betas implicit in cash-flow measures of performance. This basic calculation, therefore, 

 
2 For example, current evidence suggests buyout funds outperform on a risk-adjusted basis (Higson and Stucke (2012), 

Harris, Jenkinson, and Kaplan (2014), and Robinson and Sensoy (2013)).. 

3 Other indices based on secondary markets have also incorporated some type of interpolation to infer the prices of 

non-traded assets. Bond indices, for instance, often employ “matrix pricing” to infer the prices of non-traded bonds. 

4 This calculation assumes that the debt beta equals zero. In fact, estimates of buyout debt betas are positive, which 

would lead the fund-level beta in this example to be less than 2 (see Kaplan and Stein (1990)). 
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produces a total-return beta for PE consistent with the total-return betas we estimate using our indices.  For 

our main index we document an alpha of -2% annually that is insignificant from zero. As mentioned above, 

this finding contrasts with most of the literature that finds buyout funds outperform public markets on a 

risk-adjusted basis using cash-flow measures of performance.  While we find the beta of a listed PE index 

to be very similar to the betas of our transaction-based PE indices, we find the average return and alpha of 

the listed PE index to be considerably lower. These findings highlight the difficulty of listed PE indices to 

accurately capture the performance of LP investments. 

To further investigate the second question above, we estimate time-series variation in PE discount 

rates. We find that PE log book-to-market ratios vary considerably for our secondary market PE index. 

Using regressions motivated by the Campbell Shiller (1988) identity, we also find that all variation in log 

book-to-market ratios for private equity can be explained by variation in market discount rates. A similar 

phenomenon has been documented for other asset classes including public equities, treasuries, credit, 

foreign exchange, and sovereign debt.5 From these regressions we find the standard deviation of long-run 

private equity discount rates to be about 0.36. Cochrane (2011) estimates the standard deviation of discount 

rates at similar horizons for public equity to be 0.29.  Our index, however, is highly levered with a beta of 

1.79 whereas Cochrane’s results are for a unit-beta portfolio.  Hence, a more appropriate comparison from 

public markets might be the standard deviation of discount rates for a levered market portfolio with a beta 

of 1.79, that is, 1.79 ൈ 0.29 ൌ 0.52.  From this perspective, PE discount rates may vary somewhat less than 

public market discount rates.   Dynamics in risk-aversion and sentiment for the marginal investor in private 

equity may be somewhat muted relative to that of the marginal investor in public equity. In contrast, 

however, the standard deviation of book (NAV) discount rates is only 0.10.  NAVs are too smooth from 

the perspective of an investor with access to secondary markets, not only because they reflect stale 

information (e.g., Ewens, Jones, and Rhodes-Kropf (2013)), but also because they fail to reflect variation 

in market discount rates for PE. 

 
5 Cochrane (2011) provides a summary of the literature.   
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To directly address the second question above, we then compare estimates of GPME for funds in 

our index with the index CAPM alpha. In contrast to our index alpha, the GPME for funds in our main 

index is relatively large at about 0.27 and is comparable to that of venture funds pre-1998, a period of strong 

performance for venture funds (Korteweg and Nagel (2016)).  While our empirical results suggest that a 

positive discount-rate risk premium creates a wedge between GPME and alpha, we lack power to estimate 

GPME with much precision using the overlapping cash flows of the funds in our universe.  In addition, our 

results may be driven by specific features of PE secondary markets, transaction costs, or the manner in 

which we construct our PE secondary market indices.  To provide further evidence that discount-rate risk 

can separate cash-flow based measures of performance from standard measures, we estimate GPME and 

alpha using a group of investments in public companies where valuations and portfolio construction are 

transparent, and where transaction costs are minimal. In particular, we construct the cash flows for a series 

of synthetic funds that invest in size-decile portfolios of public equities. For these synthetic funds we find 

the estimated GPMEs to be large and highly statistically significant, but CAPM alphas to be virtually zero, 

insignificant, and in some cases, slightly negative.  These results provide additional support that discount-

rate risk can generate a significant distinction between the two types of investment performance measures.  

What kind of investor cares about variation in discount rates?  The utility of any investor with some 

positive probability of accessing PE secondary markets may be impacted by variation in PE discount rates.  

Many PE investors, however, do not engage in PE secondary markets and simply collect the cash flows.  In 

reality, all LPs may access PE secondary markets but face costs and constraints, including the potential cost 

of harming relations with GPs, that prevent them from doing so.  It is similarly common for investors who 

buy corporate bonds to avoid trading in secondary markets and collect the coupons. Many bond investors, 

however, dynamically optimize and rebalance their portfolios in markets for credit and interest-rate swaps, 

which are facilitated by the existence of secondary market prices for bonds. Just as the factor exposures of 

coupon payments do not capture the full risk exposure of bond investors, the factor exposures of PE cash 

flows do not capture the full risk exposure of PE investors with a variety of myopic or dynamic objectives.  
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There exist states of the world in which even self-proclaimed “buy-and-hold” investors will find it optimal 

to engage in PE secondary markets, as we observed during the financial crisis (e.g., Miller and Fabrikant 

(2008)).      

 Finally, what role do transaction costs such as liquidity discounts play in our results? The returns 

of all asset classes in secondary markets are influenced to some degree by transaction costs. As a seller-

driven market, transaction costs in PE secondary markets appear to be borne by sellers.  Buyers earn a small 

premium as market makers if positions are held to the end of a fund’s life (Nadauld et al. (2019), NSVW 

hereafter). Our index returns, however, reflect returns from buying and selling at secondary market prices. 

To the extent that buyers earn a premium for market making, this premium is largely canceled out when 

the position is sold three months later.6      

Our paper is organized as follows. In Section I we discuss various approaches the literature has 

taken to measure risk in private equity. Section II derives the relation between GPME and alpha. Section 

III describes the methodology used to create a private equity index using secondary market prices. Section 

IV summarizes our data. Section V presents estimates of the model used to create the index and subsequent 

PE alphas, betas, and other performance metrics arising from the index. Section VI investigates variation 

in PE discount rates and compares estimates of GPME and CAPM alpha for funds in our index and a set of 

synthetic funds that invest in public equities. Section VII concludes.      

I.  Prior Work Measuring Private Equity Risk and Return 

For most asset classes, investors rely on secondary market transaction-based indices to measure 

performance, in which case risk can be appropriately characterized as the covariance of the total return with 

 
6To the extent that the liquidity discount is slowly decreasing over time as markets become more liquid during our 

sample, estimated performance measures based on transaction prices, such as alpha, represent an upper bound. 

Estimates of CAPM alpha based on our index suggest that buyout funds do not outperform public markets on a risk-

adjusted basis, and any accounting for a decreasing liquidity premium only strengthens this result. 
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a relevant stochastic discount factor. Because such secondary markets did not exist for many years in private 

equity, alternative approaches were developed to measure and assess risk and return in this market. 

Korteweg (2016) provides a thorough survey of the PE performance literature.  Here we review a few 

highlights. We classify prior studies of PE investment performance into six groups which vary depending 

on the recommended approach.  

First, a number of studies estimate the CAPM alpha and beta of private equity using book returns 

based on the net asset value specified by the general partner (see Anson (2013), Woodward (2009) and 

Ewens, Jones and Rhodes-Kropf (2013)). Because the portfolio companies often have no observable market 

price, marked values often do not reflect the most recent information in public markets.  To accurately 

measure systematic risk, these authors project book returns on current and lagged market returns and then 

sum up the estimated coefficients to obtain an estimator for beta as in Dimson (1979). These studies find 

beta for buyout companies to be in the range of 0.70 to 1.0 with alphas ranging from 3.2% to 4.8% 

annualized.     

A second group of studies evaluate private equity performance by estimating the public market 

equivalent, or PME, of Kaplan Schoar (2005) using cash flows paid to and received by limited partners. 

Recent studies that use net-of-fee fund-level cash flow data find the PME for buyout funds to be in the 

range of 1.19-1.23, suggesting that buyout funds outperform public equity markets even after adjusting for 

fees (see Higson and Stucke (2012), Harris, Jenkinson, and Kaplan (2014), and Robinson and Sensoy 

(2013)).  Kortegweg and Nagel (2016) develop the GPME to relax restrictions on the stochastic discount 

factor implicit in the PME and study the performance of venture companies.7   

 
7Whereas the PME is the ratio of discounted distributions to discounted capital takedowns, the GPME is the difference, 

or NPV based on a stochastic discount factor.  When capital calls are stochastic, asset pricing theory makes no clear 

predictions about the expected ratio because of a Jensen’s inequality effect (see Kortegweg and Nagel (2016)).  If we 

define the PME as discounted distributions minus contributions, then the GPME nests the PME with the SDF defined 

as the inverse public market return.   
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A third group of studies evaluate PE performance by estimating factor alphas and betas from 

regressions of log IRRs on the contemporaneous IRRs of the public equity market and other factor 

portfolios.  Most papers that take this approach estimate fund log IRRs from cash flows between private 

equity funds and their portfolio firms (see Frazoni, Nowark, and Philippou (2012) and Axelson, Sorensen, 

and Strömberg (2014).)  These papers find buyout betas to be in the range of 0.90 to 2.4 with alphas in the 

range of 8.6% to 9.3%.8   

A fourth group of studies evaluate the performance of private equity by creating mimicking 

portfolios of publicly traded securities that are similar to PE in terms of portfolio company characteristics 

(Groh and Gottschalg (2011) and Stafford (2022)). In a related approach, Gupta and Van Nieuwerburgh 

(2020)) create synthetic strips to match the cash flows paid to and from limited partners using a variety of 

exchange traded securities.  The market prices of these strips cannot be observed and are evaluated using a 

no-arbitrage pricing model.   These studies find buyout betas in the range of 1.4 to 1.8 and alphas in the 

range of 8.4% to 11.8% annualized.   

A fifth group of studies develop methods to estimate PE buyout risks by imposing a model on 

systematic cash flow risks across funds and through time and incorporating pricing information from public 

markets (Buchner and Stucke (2014), Driessen, Lin, and Phalippou (2012), and Ang et al. (2018)).  These 

papers find buyout betas in the range of 1.3 to 2.7 and alphas from -4.8% to 4.5% annualized.  To the extent 

that discount rates in public markets are correlated with those in PE markets we might expect such 

approaches to be influenced to some degree by the discount rate effects we document.   

 
8 In contrast to our work, studies based on cash flows between private equity funds and their portfolio firms estimate 

risk and return gross of fees. Carried interest, which is similar to a short call position from the perspective of the 

investor, causes the net-of-fee beta to be lower than the gross-of-fee beta if the fund itself covaries positively with the 

market. Kaplan and Schoar (2005) run similar regressions using IRRs estimated from cash flows paid to and received 

by limited partners.   
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Finally, a sixth group of studies develop approaches to evaluate private equity based on the returns 

to publicly traded private equity securities (Jegadeesh, Kraussl, and Pollet (2015) and McCourt (2018)).  

These studies estimate betas for buyout funds to be in the range of 0.7 to 1.1 with alphas from 1.2% to 7.2% 

annualized.  

Overall, the vast majority of evidence in the literature suggests that buyout funds tend to outperform 

on a risk-adjusted basis using data on PE cash flows.  But valuation and performance measurement based 

on cash flow data can, in general, only account for cash-flow risk exposures. Factor exposures measured in 

much of the existing work are “cash-flow betas” that measure the covariance between the stochastic 

discount factor (SDF) and cash flows of the underlying PE investment.9 These estimates miss risk exposures 

coming from co-movement of the SDF with valuations associated with changes in PE discount rates. 

Without data on actual secondary market prices, it is impossible to understand the magnitude of this risk 

and the impact it may have on PE performance and standard metrics such as alpha and beta.  

Some studies evaluate PE performance using either PE NAVs or exchange traded asset returns. The 

well-known excessive “smoothness” of NAVs has been attributed to the use of stale information by general 

partners.  But the impact of stale information can be accounted for using standard statistical techniques such 

those proposed by Dimson (1979). Any excess smoothness in NAVs after appropriately accounting for the 

use of stale information should emerge from different causes. We provide evidence that variation in NAVs 

fails to account for dynamics in market PE discount rates.  

To the extent that discount rates are correlated, market prices of other exchange traded products 

could reflect some of the variation in PE discount rates, but other assets are clearly not perfect substitutes 

 
9They are cash flow betas in a different sense than in Campbell and Vuolteenaho (2004). These authors define the 

cash flow beta as the covariance between the total return of the asset being evaluated and the component of the SDF 

attributable to news about aggregate cash flows.  The factor exposures and SDF covariances behind performance 

measures using PE cash flows in the existing PE literature represent covariances between the cash flows of the asset 

being evaluated and the total SDF.   
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for PE. The marginal investor in private equity is likely to differ from the marginal investor for other asset 

classes, such as public stocks, in terms of preferences and sophistication. Dynamics in sentiment and risk 

aversion and their impact on discount rates may differ for private equity than for other assets classes. 

Moreover, the organizational structure of private equity may also generate unique properties in private 

equity risk.   

Listed private equity securities, in particular, mostly represent publicly traded funds of funds and 

the equity shares of general partners who have listed publicly. Their returns are likely to be correlated with 

those received by limited partner returns in private equity funds but are also likely to be different for at least 

four reasons. First, the cash flows of publicly traded securities of private equity firms reflect cash flows of 

the general partners, whose claim is the present value of future fees and carried interest earned by the fund, 

rather than the cash flows of the limited partner in a particular fund.  Second, large, publicly traded buyout 

firms such as Blackrock and KKR hold a variety of investments other than private equity, including hedge 

funds, real estate, advisory services, etc. Third, some of the publicly traded private equity funds are funds 

of funds that charge an extra layer of fees (that varies with performance) in addition to the fee collected by 

the managers of the unlisted funds in which funds of funds invest.  Finally, there is potential for sample 

selection in the types of funds that choose to list public shares.   

II. Performance Evaluation Based on Cash Flows versus Transaction Prices 

In this section we present a conceptual framework that connects cash-flow valuation measures with 

traditional valuation measures in asset pricing. In doing so, we characterize the way in which an investor 

might use information in secondary market prices to make capital allocation decisions. 

A.  Two First-Order Conditions  

The standard Euler equation that defines optimal allocation to asset 𝑖 is given by 

 𝐸௧ൣ𝑀௧:௧ାଵ൫𝑋௜,௧ାଵ ൅ 𝑝௜,௧ାଵ൯൧ െ 𝑝௜,௧ ൌ 0 (1) 

where 𝑋௜,௧ାଵ represents the cash flow paid by the asset at time 𝑡 ൅ 1, 𝑝௜,௧ାଵ is the market value of the asset 

at time 𝑡 ൅ 1, and 𝑀௧:௧ା௝ represents discounted growth in marginal utility from 𝑡 to 𝑡 ൅ 𝑗, 



10 
 

 𝑀௧:௧ା௝ ൌ 𝛿௝
𝑢ᇱ൫𝑐௧ା௝൯
𝑢ᇱሺ𝑐௧ሻ

, (2) 

where 𝛿 is the subjective discount factor.   The left side of Equation (1) is the one-period conditional net 

present value (NPV) from investing in asset 𝑖, 

 𝑁𝑃𝑉௜,௧ ൌ 𝐸௧ൣ𝑀௧:௧ାଵ൫𝑋௜,௧ାଵ ൅ 𝑝௜,௧ାଵ൯൧ െ 𝑝௜,௧, (3) 

which measures the marginal utility gain from an incremental investment in the asset for an investor with 

access to secondary markets.  This interpretation of NPV is analogous to the standard interpretation of 

performance measures in the mutual fund and hedge fund literatures.  The characterization of 𝑀௧:௧ା௝ may 

be investor-specific and does not necessarily reflect an equilibrium pricing kernel.   We refer to 𝑀௧:௧ା௝ as 

the investor’s stochastic discount fact, or SDF. After dividing both sides of (3) by 𝑝௧ the NPV becomes the 

conditional alpha of asset 𝑖 relative to 𝑀௧:௧ାଵ.  

Now consider a long-term buy-and-hold investor who cannot access secondary markets for asset 𝑖. 

At time 𝑡 the investor chooses the number of additional units of the asset to acquire, where each unit 

provides a series of stochastic cash flows, 𝑋௜,௧ା௝ , that arrive at times 𝑡 ൅ 𝑗 for 𝑗 ൌ 1, . .𝑇.  If the investor 

makes this choice to maximize the expected additive utility of consumption over 𝑇 periods, then the first-

order condition, subject to standard budget constraints, is, 

 𝐸௧෍𝑋௜,௧ା௝𝑀௧:௧ା௝ െ 𝑝௜,௧ ൌ 0

்ି௧

௝ୀଵ

. (4) 

The left side of equation (4) is the conditional GPME of Korteweg and Nagel (2016),  

 𝐺𝑃𝑀𝐸௜,௧ ൌ 𝐸௧෍𝑋௜,௧ା௝𝑀௧:௧ା௝ െ 𝑝௜,௧ ,

்ି௧

௝ୀଵ

 (5) 

which measures of the marginal utility gain from an incremental investment in the asset for an investor with 

no access to secondary markets.   

If the investor’s SDF represents an equilibrium pricing kernel, then the two valuation measures are 

equivalent and equal to zero.  If the SDF is investor specific, however, GPME and NPV may diverge.  An 
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investor with no access to secondary markets may value the asset differently than an investor that does have 

access, even if the two investors are otherwise identical.  We further illustrate from two perspectives. 

First, NPV clearly depends on the covariance of secondary market prices with the SDF, while 

GPME does not. For instance, when 𝑀௧:௧ା௝ is represented specifically by a CAPM SDF, as in Korteweg 

and Nagel (2016), NPV depends directly on the covariance of secondary market prices for asset 𝑖 with the 

market portfolio. In this case, NPV measures the marginal utility gain from an incremental investment in 

the asset for a myopic one-period investor who will sell the asset at the end of the period and currently holds 

positions in a stock market fund and risk-free bonds.  In contrast, GPME measures the marginal utility gain 

from an incremental investment for a buy-and-hold investor who will simply collect the cash flows until 

the fund expires, and otherwise holds positions in a stock market fund and risk-free bonds. Since the buy-

and hold investor never participates in secondary markets for asset 𝑖, GPME is immune to secondary market 

prices. As such, transitory price fluctuations for asset 𝑖 that arise from variation in market discount rates for 

the asset’s cash flows can generate risks that make the NPV higher or lower than the GPME, depending on 

whether such price movements are negatively or positively correlated with the stock market return.  

  We can directly illustrate this distinction between NPV and GPME by writing both valuation 

measures in terms of pre-determined discount rates. The implicit discount rate for NPV depends on the 

total-return beta, while the implicit discount rates for GPME depend on cash-flow-yield betas. In Appendix 

A we show that NPV can be expressed as the present value of one-period cash flows minus the current 

price, 

 𝑁𝑃𝑉௜,௧ ൌ
𝐸௧൫𝑋௜,௧ାଵ ൅ 𝑃௜,௧ାଵ൯

𝐾௜,௧
െ 𝑝௜,௧ (6) 

where  𝐾௜,௧ is a discount rate that is a linear function of the total-return beta, 𝛽௜,௧, given by 

 𝛽௜,௧ ൌ
 𝐶𝑜𝑣௧ൣ𝑀௧:௧ାଵ,𝑅௜,௧ାଵ൧

𝑉𝑎𝑟௧൫𝑀௧:௧ା௝൯
, (7) 

and 𝑅௜,௧ାଵ represents the total return of asset 𝑖 from 𝑡 to 𝑡 ൅ 1. In contrast, GPME is equivalent to the 

present value of all future expected cash flows minus the current price, 
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 𝐺𝑃𝑀𝐸௜,௧ ൌ෍
𝐸௧൫𝑋௜,௧ା௝൯
𝒦௜,௧ሺ௧ା௝ሻ

்ି௧

௝ୀଵ

െ 𝑝௜,௧ , (8) 

where the discount rate 𝒦௜,௧ሺ௧ା௝ሻ is a linear function of the cash-flow-yield beta, ℬ௜௧ሺ௧ାଵሻ, given by 

 ℬ௜௧ሺ௧ାଵሻ ൌ
 𝐶𝑜𝑣௧ൣ𝑀௧:௧ା௝ ,𝑌௜,௧ା௝൧

𝑉𝑎𝑟௧൫𝑀௧:௧ା௝൯
 (9) 

and 𝑌௜,௧ା௝ is the cash-flow yield, or rather, the cash-flow arriving at 𝑡 ൅ 𝑗, 𝑋௜,௧ା௝, divided by its valuation.  

The total-return beta depends on the covariance between secondary market prices and the SDF.  In contrast, 

cash-flow-yield betas, which only account for the covariance between cash-flows and the SDF, do not. 

Further details can be found in Appendix A. 

Second, for investors that can dynamically rebalance every period to maximize expected utility, 

the appropriate SDF to measure NPV itself will generally depend on the secondary market price for asset 𝑖 

while the appropriate SDF to measure GPME will not. Consider two investors that can dynamically 

rebalance in other assets every period (such as stocks and bonds) and that are considering a purchase of 

asset 𝑖.  One investor can also access secondary markets for asset 𝑖 while the other cannot, and the two 

investors are otherwise identical.  In this case the SDF for the unconstrained investor will depend on optimal 

consumption, savings, and investment choices at time 𝑡 ൅ 1 which will generally depend on the prevailing 

secondary market price for asset 𝑖.  In contrast the SDF for the constrained investor is immune to the asset’s 

secondary market price.  

The expected utility of the unconstrained dynamic investor with secondary market access in this 

case must be at least as high as the expected utility of the constrained investor, since the buy-and-hold 

strategy is among the possible dynamic strategies the unconstrained investor can pursue.  Moreover, if 

future cash flows from the asset are all positive, then the NPV must also be at least as high as the GPME.   

The current perceived value of an asset with positive cash flows that includes options to liquidate must be 

at least as high as an otherwise identical asset with no such options. On the other hand, if some future cash 

flows are negative, as they are for a PE deal, then NPV may be less than GPME even for investors that 
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dynamically rebalance.  Depending on the distribution of future secondary prices and future states, it may 

be optimal for the unconstrained investor to preserve the option to acquire a stake in the PE deal later at 

potentially favorable secondary prices while avoiding high capital calls that potentially arrive in bad states 

of the world. 

Regardless of the SDF or the nature of investors that invest in PE, the value of an incremental 

investment in PE for an unconstrained investor with access to secondary markets cannot be measured 

without secondary market prices.  In this paper we make this valuation possible by creating a secondary 

market PE index. To connect our results with prior work, in the next section we derive the relation between 

unconditional GPME and unconditional alpha when the same SDF is used to measure both, and in our 

empirical work we use a CAPM SDF to compare unconditional GPME and alpha.  We leave an empirical 

investigation of the dynamic portfolio selection problem, when secondary markets are accessible, for future 

research.  

B. GPME and Alpha  

In this section we derive the mathematical relation between GPME and alpha when the same SDF 

is used to measure both.  Assume a PE fund pays cash flows, 𝑋௜,௧, beginning at 𝑡 ൌ 1 and ending at 𝑡 ൌ 𝑇, 

where cash flows can be positive, negative or zero.  Define the unconditional GPME of the fund as 

 𝐺𝑃𝑀𝐸௜ ൌ 𝐸 ቎ ෍ 𝑀௧:௧ା௝ାଵ𝑋௜,௧ା௝ାଵ

்ି௧ିଵ

௝ୀ଴

െ 𝑝௜,௧቏. (10) 

We can add and subtract 𝑀௧:௧ା௝ାଵ𝑝௧ା௝ାଵ to the term inside the expectations operator, 

 
𝐺𝑃𝑀𝐸௜ ൌ 𝐸ൣ∑ 𝑀௧:௧ା௝ାଵ𝑋௜,௧ା௝ାଵ ൅ 𝑀௧:௧ା௝ାଵ𝑝௜,௧ା௝ାଵ െ 𝑀௧:௧ା௝ାଵ𝑝௜,௧ା௝ାଵ

்ି௧ିଵ
௝ୀ଴ െ 𝑝௜,௧൧  

   ൌ 𝐸ൣ∑ 𝑀௧:௧ା௝ାଵሺ𝑋௜,௧ା௝ାଵ ൅ 𝑝௜,௧ା௝ାଵሻ െ 𝑀௧:௧ା௝𝑝௜,௧ା௝
்ି௧ିଵ
௝ୀ଴ ൧                     

(11) 

where the second line of (11) follows since 𝑀௧:௧𝑝௜,௧ ൌ 𝑝௜,௧ and 𝑝௜,் ൌ 0.   But then we can factor out 𝑀௧:௧ା௝ 

on the right side of (11), 

 𝐺𝑃𝑀𝐸௜ ൌ 𝐸 ∑ 𝑀௧:௧ା௝ሾ𝑀௧ା௝:௧ା௝ାଵሺ𝑋௜,௧ା௝ାଵ ൅ 𝑝௜,௧ା௝ାଵሻ െ 𝑝௜,௧ା௝ሿ
்ି௧ିଵ
௝ୀ଴ .  (12) 

By iterated expectations, we have  
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 𝐺𝑃𝑀𝐸௜ ൌ 𝐸 ∑ 𝑀௧:௧ା௝𝐸௧ା௝ሾ𝑀௧ା௝:௧ା௝ାଵሺ𝑋௜,௧ା௝ାଵ ൅ 𝑝௜,௧ା௝ାଵሻ െ 𝑝௜,௧ା௝ሿ,
்ି௧ିଵ
௝ୀ଴   (13) 

which, from Equation (3), implies 

 𝐺𝑃𝑀𝐸௜ ൌ 𝐸 ቎ ෍ 𝑀௧:௧ା௝𝑁𝑃𝑉௜,௧ା௝

்ି௧ିଵ

௝ୀ଴

቏. (14) 

The unconditional GPME is equivalent to the expected sum of stochastically discounted conditional NPVs 

over the life of the fund.  

Conditional alpha is simply 𝑁𝑃𝑉௜,௧ା௝ scaled by price,  

 𝛼௜,௧ା௝ ൌ 𝑁𝑃𝑉௜,௧ା௝/𝑝௜,௧ା௝, (15) 

implying that we can write Equation (14) as 

 𝐺𝑃𝑀𝐸௜ ൌ 𝐸 ቎ ෍ 𝑀௧:௧ା௝𝑝௜,௧ା௝𝛼௜,௧ା௝

்ି௧ିଵ

௝ୀ଴

቏. (16) 

This implies 

 𝐺𝑃𝑀𝐸௜ െ ෍ 𝐶𝑜𝑣ሺ𝑀௧:௧ା௝

்ି௧ିଵ

௝ୀ଴

𝑝௜,௧ା௝ ,  𝛼௜,௧ା௝ሻ ൌ 𝛼௜ ෍ 𝐸ሾ𝑀௧:௧ା௝𝑝௜,௧ା௝ሿ,

்ି௧ିଵ

௝ୀ଴

 (17) 

where 𝛼௜ is the unconditional alpha. Given a strictly positive SDF, the summation term on the right of (17), 

which represents the present value of the sum of expected future secondary prices, is positive. The right 

side of (17), therefore, takes the same sign as 𝛼௜ and is zero if and only if 𝛼௜ ൌ 0. On the left side of (17) 

we have the unconditional GPME minus a risk premium.    

 To provide intuition for the risk premium in Equation (17), note that 𝑀௧:௧ା௝𝑝௧ା௝ can be interpreted 

as the marginal benefit of selling and consuming an incremental unit of the PE stake in secondary markets 

at time 𝑡 ൅ 𝑗.10 Further, conditional alpha is equivalent to a ratio of discount rates.  To see this equivalence, 

let 𝑀௧ା௝
∗  denote an equilibrium pricing kernel.  Conditional alpha can then be written as  

 
10 Define consumption at time 𝑡 as 𝑐௧ ൌ 𝑒௧ ൅ 𝑧௧𝑝௧ where 𝑧௧ denotes the amount of the PE stake sold and consumed, 

and 𝑒௧ represents consumption when 𝑧௧ is equal to zero. Then 𝜕𝑢ሺ𝑐௧ሻ/𝜕𝑧௧ ൌ 𝑢ᇱሺ𝑐௧ሻ𝑝௧.   
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 𝛼௜,௧ା௝ ൌ
𝑁𝑃𝑉௜,௧ା௝
𝑝௜,௧ା௝

ൌ  
𝐸௧ା௝ൣ𝑀௧ା௝ାଵ൫𝑋௜,௧ା௝ାଵ ൅ 𝑝௜,௧ା௝ାଵ൯൧

𝐸௧ା௝ൣ𝑀௧ା௝ାଵ
∗ ൫𝑋௜,௧ା௝ାଵ ൅ 𝑝௜,௧ା௝ାଵ൯൧

െ 1. (18) 

In Appendix A we show that,  

 𝐸௧ൣ𝑀௧:௧ାଵ൫𝑋௜,௧ାଵ ൅ 𝑝௜,௧ାଵ൯൧ ൌ
𝐸௧ሾ𝑋௜,௧ାଵ ൅ 𝑝௜,௧ାଵሿ

𝐾௜,௧
, (19) 

where 𝐾௜,௧ is a pre-determined discount rate known at time 𝑡 that is a linear function of the total-return beta 

of the PE stake relative to the SDF, given in Equation (7).  Equations (18) and (19) imply that conditional 

alpha is simply equal to a ratio of discount rates, 

 𝛼௜,௧ା௝ ൌ
𝐾௜,௧ା௝
∗

𝐾௜,௧ା௝
െ 1, (20) 

 where 𝐾௜,௧ା௝
∗  represents the market discount rate based on the pricing kernel, and 𝐾௜,௧ା௝ is the discount 

rate based on the investor-specific SDF.  The risk-premium on the left of (17) therefore represents a unique 

form of discount-rate risk that captures the covariance between the marginal benefit of selling and 

consuming an incremental unit of the PE stake and the prevailing market discount rate for PE cash flows. 

If the realized marginal benefit of consuming an incremental unit of the PE stake tends to be high right 

when the market discount rate, 𝐾௜,௧
∗ , is relatively high and prices are low, this positive covariance creates 

disparity between GPME and alpha.  Alpha accounts for this discount-rate risk premium while GPME does 

not. 

III. Creating an Index 

Relative to creating indices on exchange-traded securities such as stocks, creating a market-based 

private equity index is challenging because every fund does not transact every period and those that do 

transact are not selected randomly. Our approach to creating an index of private equity returns relies on 

three key components: two first-order approximations and the estimation of a Heckman (1979) sample 

selection model.  We first lay out the basic intuition of our approach, and then provide additional details. 
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A. Intuition of Index Construction 

To construct an index of returns, suppose we observe quarterly returns for 𝑁 assets, �̃�ଵ, … , �̃�ே.  The 

equal-weighted portfolio return for the quarter, �̃�௣, is the cross-sectional average, 

 �̃�௣ ൌ
1
𝑁
෍�̃�௜

ே

௜ୀଵ

. (21) 

If we project returns on a set of characteristics, 𝒙𝒊, that includes an intercept,   

 �̃�௜  ൌ 𝒙𝒊
ᇱ𝒃 ൅ 𝑒௜ , (22) 

then we can recover the true realized equal-weighted portfolio return as 

 �̃�௣ ൌ 𝒙ഥᇱ𝒃, (23) 

where 𝒙ഥ is the cross-sectional average value of 𝒙𝒊 across all 𝑁 funds.  In the linear projection given by 

equation (22), both 𝑒௜ and 𝒙𝒊𝑒௜ average out exactly to zero across the 𝑁 funds in our population. These 

residual properties hold, and we can recover the true realized portfolio return, for any 𝒙𝒊 we choose, 

provided that 𝒙𝒊 contains an intercept. The purpose of equations (22) and (23) is to calculate the realized 

portfolio return, not to estimate the parameters of a model we hope is relevant outside our population of 𝑁 

funds.  The standard approach to calculate realized portfolio returns given by Equation (21), in fact, 

represents a special case of (23) in which 𝒙𝒊 is a scalar and equal to one.   

We do not observe �̃�௜ for the full population of 𝑁 funds, but only for a sample of funds in a given 

quarter. For any choice of 𝒙𝒊, if we were to estimate 𝒃 using only the observations for which we have data 

on both �̃�௜ and 𝒙𝒊 then the OLS estimate of 𝒃 will be inconsistent unless the subset of funds that transact are 

chosen randomly. Nadauld et al. (2019) document, however, that larger and more established funds are 

more likely to transact in this market, and hence, the funds that do transact do not appear to be randomly 

selected. 

 We therefore use a selection model to consistently estimate 𝒃, based on the approach of Heckman 

(1979).  While we do not observe �̃�௜ for every fund, we do observe 𝒙𝒊 for every fund. Using our estimate of 

𝒃 we calculate the index return as the average predicted return each quarter as in (23) using all 𝑁 funds in 
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the population. We thus obtain consistent estimates of index returns each quarter based on the private equity 

secondary-market transactions we observe.   

B. Inferring Index Returns from Book-to-Market Ratios 

While the preceding discussion outlines the basic approach to index construction, we now explain 

further details. Funds do not often transact in adjacent quarters, and as such, the number of individual fund 

transactions is much greater than the number of observed individual quarterly fund returns. To maximize 

our use of available data we infer index returns from observed log book-to-market ratios in adjacent quarters 

using the Campbell Shiller (1988) identity. Doing so enables us to take advantage of all transactions in our 

sample, regardless of whether the same funds transact in adjacent quarters or not. Besides enabling us to 

estimate returns for our private equity index, our approach is convenient for understanding variation in PE 

discount rates, since all variation in log book-to-market ratios must be associated with either variation in 

market discount rates, variation in book-discount rates, or variation in future book-to-market ratios.  

Let the log quarterly portfolio market return for 𝑃𝐸 fund 𝑖 from 𝑡 to 𝑡 ൅ 1 be defined as 

 𝑟௜,௧ାଵ ൌ lnቆ
𝑝௜,௧ାଵ ൅ 𝑋௜,௧ାଵ

𝑝௜,௧
ቇ , (24) 

where, as before, 𝑝௜,௧ାଵ is the market value of the fund at time 𝑡 ൅ 1, and 𝑋௜,௧ାଵ represents total distributions 

minus capital calls for the portfolio from 𝑡 to 𝑡 ൅ 1.11  Similarly, define the log-book return based on net 

asset values as 

 𝑛௜,௧ାଵ ൌ lnቆ
𝑁𝐴𝑉௜,௧ାଵ ൅ 𝑋௜,௧ାଵ

𝑁𝐴𝑉௜,௧
ቇ, (25) 

where 𝑁𝐴𝑉௜,௧ାଵ is the net asset value (book value) of the fund at time 𝑡 ൅ 1. Our approach relies on two 

first-order approximations. The first is similar to an approximation of Vuolteenaho (2002) based on the 

Campbell Shiller (1988) identity and is further developed in Appendix B. This approximation provides a 

natural approach to adjust book returns to reflect market returns, 

 
11 When merging cash-flow data with market values we normalize to a $1 commitment.  
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 𝑟௜,௧ାଵ ൌ 𝑛௜,௧ାଵെ𝜌௜,௧ାଵ 𝜃௜,௧ାଵ ൅ 𝜃௜,௧, (26) 

where 𝜃௜,௧ is the-log book-to-market ratio of the fund, 

 𝜃௜௧ ൌ ln൫𝑁𝐴𝑉௜,௧൯ െ ln൫𝑃௜,௧൯, (27) 

and 𝜌௜,௧ାଵ is an approximation parameter that can take on one of three values. If 𝑋௜,௧ାଵis positive (negative) 

then 𝜌௜,௧ାଵ is slightly below (above) one.  When 𝑋௜,௧ାଵis zero, then 𝜌௜,௧ାଵ is identical to one and (26) holds 

exactly.  (See Appendix B for further details.)  Book values are likely to be among the most informative 

variables that we can observe regarding the expected cash flows of the fund. Since we observe book-returns 

for every fund in our index each period, our market-based returns, 𝑟௜,௧ାଵ, contain all pricing information 

embedded in book values. The adjustment െ𝜌௜,௧ାଵ 𝜃௜,௧ାଵ ൅ 𝜃௜,௧ accounts for any cash-flow or discount-rate 

effects reflected in the market return that is omitted in the book return.    

To aggregate individual fund returns to index returns, we rely on a second first-order approximation 

in which the average log return is approximately the log average return (see Appendix C).  We cannot 

consistently estimate 𝜃௜,௧ for funds that are missing transaction values, but we can consistently estimate the 

cross-sectional average value of the log return each quarter. Intuitively, the true residual vanishes in the 

average.    

To illustrate, suppose that we do observe 𝜃௜௧ and a set of characteristics, 𝒙𝒊𝒕, across all funds in 

each quarter.  If we project 𝜃௜௧ on a panel of characteristics, 𝒙𝒊𝒕, that includes time fixed-effects,  

 𝜃௜௧ ൌ 𝒙𝒊𝒕
ᇱ 𝒃 ൅ 𝑒௜௧ , (28) 

then we can recover the true average value of 𝜃௜௧ in each quarter as 

 �̅�௧ ൌ 𝒙ഥ𝒕
ᇱ𝒃, (29) 

for any choice of 𝒙𝒊𝒕, where 𝒙ഥ𝒕 denotes the average value of 𝒙𝒊𝒕 across funds in quarter 𝑡.  Since we do not 

observe 𝜃௜,௧ for all funds, we consistently estimate 𝒃 under the model specification and assumptions of 

Heckman (1979). Section 4.3 below provides additional details. Given a consistent estimate of 𝒃, define 

�̂�௜,௧ାଵ as 



19 
 

 �̂�௜,௧ାଵ ൌ 𝑛௜,௧ାଵ െ 𝜌௜,௧ାଵ 𝒙𝒊𝒕ା𝟏
ᇱ 𝒃 ൅ 𝒙𝒊𝒕

ᇱ 𝒃. (30) 

While we do not observe 𝜃௜௧ for every fund in our index, we do observe 𝑛௜,௧ାଵ, 𝒙𝒊𝒕ା𝟏
ᇱ , and 𝜌௜,௧ାଵ for the full 

population. Given our consistent estimate of 𝒃, it then follows that the cross-sectional average value of 

�̂�௜,௧ାଵ across funds in each quarter is a consistent estimate of �̅�௧ାଵ, the average value of 𝑟௜,௧ାଵ as defined in 

(26). Appendix C shows that to a first order approximation, the average log return is the log of the average.  

This average log return, therefore, represents an estimate of the log return for the index.12 

C. Two-Step Heckman Approach 

To estimate 𝒃 in (28) we follow the two-step approach of Heckman (1979).  In the first step we 

estimate the parameters of a selection equation, 

 𝑦௜௧ ൌ 1ሾ𝒛𝒊𝒕
ᇱ 𝒄 ൅ 𝑢௜௧ ൐ 0ሿ (31) 

where 𝑦௜௧ is a dummy variable that equals 1 when fund 𝑖 transacts at time 𝑡, and 𝒛𝒊𝒕 represents a vector of 

fund characteristics observable across all funds in the index.  A consistent estimator of the parameter vector 

𝒄 is available from a first-stage probit estimation of the selection equation using all funds in the portfolio. 

We then estimate the inverse Mills ratio, 𝜆መ௜௧, as 

 𝜆መ௜௧ ൌ
𝜙ሺ𝒛𝒊𝒕

ᇱ 𝒄ሻ

Φሺ𝒛𝒊𝒕
ᇱ 𝒄ሻ

 (32) 

where 𝜙ሺ⋅ሻ is the normal distribution function and Φሺ⋅ሻ is the cumulative normal distribution function. The 

second step is to estimate the equation specified in (28) by OLS after including 𝜆መ௜௧ as an additional 

explanatory variable, 

 𝜃௜௧ ൌ 𝒙𝒊𝒕
ᇱ 𝒃 ൅ 𝜆መ௜௧𝑑 ൅ 𝑒௜,௧ . (33) 

 
12 Note that 𝜌௜,௧𝒙𝒊𝒕

ᇱ 𝒃 ൌ 𝜌௜,௧൫𝜃𝒊,𝒕 െ 𝑒௜,௧൯ and that the approximation parameter, 𝜌௜,௧, does vary slightly across funds in 

our application.  To ensure that the average value of 𝜌௜,௧𝑒௜௧ across funds in each quarter is zero we can appropriately 

include 𝜌௜,௧ as one of the characteristics in 𝒙𝒊𝒕. In practice, however, this makes very little difference in results.   
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The estimate of 𝒃 in (33) will be consistent under the following four assumptions: (i) 𝒛𝒊𝒕, 𝒙𝒊𝒕, and 

𝑦௜௧ are observed for every fund in the portfolio and 𝜃௜௧ is observed whenever 𝑦௜௧ ൌ 1, (ii) 𝑒௜௧ and 𝑢௜,௧ are 

independent of both 𝒛𝒊𝒕 and 𝒙𝒊𝒕 with zero mean, (iii) 𝑢௜,௧   is distributed Normal(0,1), and (iv) 𝐸൫𝑒௜,௧ห𝑢௜௧൯ ൌ

𝛿𝑢௜௧ where 𝛿 is a constant.  For example, see Wooldridge (2010), p. 803.  Robust identification that does 

not rely on assumption (iii) requires an exclusion restriction: a variable in the selection equation that is 

uncorrelated with the book-to-market ratio.  To help ensure that assumption (ii) holds, in practice all 

explanatory variables in the selection equation, 𝒛𝒊𝒕, are often included as explanatory variables in the 

primary equation of interest, 𝒙𝒊𝒕.   

Section IV provides details on the exact explanatory variables we use in our model. We rely on an 

excluded instrument to achieve robust identification that does not depend on the normality assumption (iii).  

All other explanatory variables in the selection equation are included in the pricing equation.            

Our approach differs somewhat from traditional hedonic techniques to estimate price indices (e.g., 

Gatzlaff and Haurin (1998) and Hwang, Quigley, and Woodward (2005)).  The objective in estimating a 

traditional hedonic model is to understand price changes for a set of differentiated goods conditional on 

observed attributes such as quality or specific features. To mirror the typical portfolio definition of an index, 

we instead define a population of assets and seek to understand changes in the value of the aggregate 

population for which attributes, such as those related to expected cash flows and discount rates, change 

over time.  An alternative approach to building price indices involves using repeat sales (e.g, Peng (2001)). 

Repeat sales are too infrequent in our transactions data to consider this approach.    

D. Explanatory Variables 

The key variables in the pricing equation are time-fixed effects, or state variables that represent 

time fixed effects, to ensure that the mean residual is zero within each quarter across all funds in the 

population. If funds were selected at random, we would only need to estimate the pricing equation with 

time-fixed effects to consistently estimate the average log book-to-market ratio across our population of 

funds.  As discussed above, because we are estimating the parameters of a sample selection model, we 
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include all explanatory variables in the selection equation given in (31) that may be correlated with log 

book-to-market ratios in the pricing equation to help ensure that the pricing residual is independent of all 

explanatory variables in the selection equation. (See assumption (ii).) Our primary objective is simply to 

estimate the cross-sectional average value of 𝜃௜,௧ each period, not to forecast the value of 𝜃௜,௧ for individual 

funds or to necessarily understand how 𝜃௜,௧ relates to specific characteristics. We demonstrate that our 

results are robust to the inclusion of either state variables or time fixed effects, with or without the additional 

fund-specific characteristics in the pricing equation in Appendix Table HI.   

E. Estimating Index Parameters 

We estimate index parameters (such as alphas and betas) for our private equity index. We compare 

our estimated parameters against those estimated for other indices, including a Preqin NAV-based index 

built using the same funds that are in our market price index, the Burgiss index which is also a NAV-based 

index, and the S&P Listed Private Equity Index. 

So far, we have described a process to estimate the quarterly log return for our index.  It is well-

known that the intercept in a regression of excess log returns on excess market returns cannot be interpreted 

as alpha.  A common solution is to estimate the intercept using annualized log returns, and then adjust under 

the assumption that log returns are normally distributed (for example, see Cochrane (2004) and Axelson, 

Sorenson, and Stromberg (2014)). To estimate parameters for the Preqin, Burgiss, and S&P indices 

mentioned above we use simple quarterly returns.  To follow suit, we exponentiate our estimate of the 

quarterly index log return, the cross-sectional average value of �̂�௜,௧ାଵgiven in (26), to arrive at a consistent 

estimate of the simple return for our index before calculating index parameters.  We obtain similar results 

if we run regressions using excess log returns and adjust the intercept based on the normal assumption as 

others have done. These results are given in Panel A of Appendix Table HI. 

The transactions in the private equity secondary market upon which we build our index are highly 

non-synchronous, occurring at various times throughout the quarter. Standard measures of alpha, beta, and 

volatility using non-synchronous data are in general, inconsistent. We therefore follow Dimson (1979) to 
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estimate index betas by regressing returns on contemporaneous and lagged values of the market return, for 

an appropriate number of lags, and summing the slope coefficients.  We estimate alpha as 

 𝛼 ൌ ൫�̅�௣,௧ାଵ െ �̅�௙,௧ାଵ൯ െ 𝛽ሺ�̅�௠,௧ାଵ െ �̅�௙,௧ାଵሻ (34) 

where �̅�௣,௧ାଵ represents our average estimated index return across quarters, �̅�௙,௧ାଵ is the average return on 

short-term t-bills, �̅�௠,௧ାଵ is the average public market return, and 𝛽 represents our Dimson adjusted beta. 

We obtain consistent estimates of volatility, Sharpe ratios, and correlation, under the model of Dimson 

(1979) as outlined in Appendix D. 

IV.  Data on Transactions in the Private Equity Secondary Market  

In this section we briefly describe the data and variables used to estimate the index.   Our transaction 

data come from a large intermediary in the private equity secondary market, extending the data used by 

Nadauld et al. (2019). These data identify the fund that is sold, the total capital committed by the seller, the 

amount unfunded by the seller, the purchase price, and the transaction date for all transactions consummated 

through this intermediary from January of 2006 through December of 2018. We clean the data as detailed 

in Appendix E and pull the most recent transaction for each fund each calendar quarter for funds with a 

total commitment greater than $500 million.  

We obtain data on other fund characteristics, such as calls, distributions, 𝑁𝐴𝑉, fund 𝐿𝑃 type, and 

size, from Preqin, from January 2006 through June of 2018, and clean these data as detailed in Appendix 

E.    Preqin is built from a variety of sources including public filings and reports, submissions by GPs, and 

FOIA requests. While there are other data sets that may be more representative of the entire fund universe, 

Preqin is the only database that provides fund names, thus making it possible to merge in our secondary 

market transaction data.     

Within each calendar quarter we sum all contributions and distributions for a given fund.  We then 

merge transactions data with the Preqin sample, some of which is done by hand. Details, again, can be 

found in Appendix E. After this process, we end up with a sample of 596 funds for which we have fund-
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level data. We observe 839 transactions on 287 of these funds between the first quarter of 2006 and the 

second quarter of 2018.  

We propose using eight explanatory variables in our selection equation: the log size of each fund, 

two age dummies, fund PME, the fraction of limited partners for each fund that are pension funds, and three 

state variables that proxy for quarter fixed-effects.  For our main results we use state variables rather than 

quarter fixed effects to conserve power and because there is little economic insight to be gleaned from the 

coefficients on the fixed effects themselves.  We demonstrate that our results are robust to this decision by 

replacing the three state variables with time fixed effects. We also illustrate that our results are robust to 

whether or not we include the additional explanatory variables from the selection equation in the pricing 

equation along with state variables, or time fixed-effects.  We report these results in Appendix Table HI.13 

We measure size as total commitments by limited partners to the fund.  The first age dummy equals 

one if the fund age (calculated in years relative to the vintage year) is less than 4 years, and zero otherwise. 

The second age dummy equals one if the fund age is greater than 9 years, and zero otherwise. We also use 

the Kaplan-Schoar (2005) PME for each fund-quarter, measured using cash flows from Preqin and using 

NAV at the end of the quarter as terminal value. The fraction of limited partners for each fund that are 

pension funds comes from Preqin.  

Fund size and age are likely to be associated with asymmetric information about the fund or GP, 

and therefore the likelihood that a deal agreeable to both parties can be reached. Fund age is also directly 

related to the period over which fixed transaction costs can be amortized, suggesting that younger funds 

may be less likely to transact.  PME captures information about the performance of funds that may be 

associated with supply and demand. Pension fund objectives are likely to differ from those of other investors 

making PE funds with high pension ownership less likely to be sold. We further discuss pension fund 

ownership and objectives below.    

 
13In the context of the sample selection model, the inclusion of time fixed effects prevents any variable that changes 

over time, such as a decrease in liquidity, from adversely affecting model estimates.    



24 
 

The three state variables we use include the log-value-weighted book-to-market ratio for small cap 

stocks, the TED spread, and a measure of total assets under management for the PE industry.  We measure 

the small-cap book-to-market ratio using stocks with share code 10 and 11 in CRSP with less than $500 

million in market cap.  We obtain the TED spread from the St. Louis Federal Reserve calculated as the 

spread between three-month LIBOR based on U.S. dollars and three-month treasury yields. We measure 

these two state variables at the end of the month prior to the fund’s transaction date for funds that transact, 

and at the end of the second month of each quarter for funds that do not. Finally, we measure total assets 

under management, obtained from Bloomberg, at the end of the prior quarter and scale by the total number 

of firms in the U.S. with between 20 and 500 employees, obtained from the U.S. Census, measured at the 

end of the prior year.  

We use the fraction of LPs invested in a fund that are pension funds, 𝑃𝐹௜௧ , as an instrument. The 

investment objectives of pension funds differ from those of other investors: pension funds manage 

investment cash flows to match the timing of their liabilities but face unique regulatory incentives to refrain 

from dynamically hedging short-term liability risks (van Binsbergen and Brandt (2015)).  As such, pension 

funds may be less likely to engage in PE secondary markets than other investors, such as a fund-of-funds. 

Consistent with this idea, Nadauld et al. (2019) document that empirically, pension funds sell their private 

equity stakes much less frequently than other investors.  

To be a valid instrument, 𝑃𝐹௜,௧ must be uncorrelated with log book-to-market ratios after controlling 

for other observables.  Book-to-market ratios are well known to predict stock returns, suggesting that they 

largely proxy for risk or mispricing in the cross section. Evidence on the relation between pension 

ownership and mispricing is somewhat mixed. Lerner, Schoar, and Wongsunwai (2007) document that 

pension funds outperform other LPs (other than endowments) in their PE reinvestment decisions, but their 
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result does not replicate out of their 1990s sample, which does not overlap with our sample period (see 

Sensoy, Wang, and Weisbach (2014)).14  

  Table I reports summary statistics.  For this table we separate records with transactions from those 

without. Consistent with prior findings, funds on average transact at a discount relative to NAV (see 

Nadauld et al. (2019)).  The overall average log-book-to-market-ratio is 0.19, roughly corresponding with 

a 17% discount (1/expሺ0.19ሻ ൌ 0.83ሻ and the median is 0.10 corresponding with a 10% discount.  

< INSERT TABLE I HERE > 

The deviation between a fund’s NAV and its market price will depend, in large part, on how the 

market discounts future expected cash flows relative to the GP.  Hence, a trade for less than NAV is not 

necessarily reflective of a liquidity discount. The economic discount or premium at which a transaction 

occurs should be measured relative to the (unobservable) underlying value of the fund’s assets, not the 

NAV.15  

Funds that transact in the secondary market tend to be larger and older than average. The average 

log fund size for funds that transact is about 21.95 (corresponding roughly with a size of $3.4 billion) 

compared to an average log fund size for funds that do not transact of about 21.28 (corresponding roughly 

with a size of $1.7 billion).  The average age of all transacting funds is 8.6 years, and 6.4 years for non-

transacting funds.  In addition, funds that transact display slightly higher average PMEs in the range of 1.15 

compared to 1.13 for non-transacting funds.  For the average fund in our sample that transacts, about 53% 

 
14 Others find that pension funds make poor investment decisions relative to other institutions (see Hochberg and 

Rauh (2012), and Andonov, Hochberg, and Rauh (2017)). 

15 Nadauld et al. (2019) develop this issue further. They argue that a second measure of a trade’s discount relative to 

fundamental value is the difference in returns between buyers and sellers. If transactions always occurred at 

fundamental values and expected returns do not change over time, then buyer and seller expected returns should be 

approximately the same.  Instead, these authors find that buyers of LP stakes outperform sellers, suggesting that, on 

average, transaction prices tend to be lower than fundamental values. 
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of the limited partners are pension funds, as indicated by the summary statistics on 𝑃𝐹௜௧, compared  with 

56% for the average fund that does not.  

Figure 1 reports the number of transactions per quarter for the full sample, of which there are 839 

transactions. The figure highlights the rapid growth in the secondary market. The years 2017 and 2018 

report almost five times the number of transactions as occurred in 2006 and 2007.  

< INSERT FIGURE 1 HERE > 

V.  Estimates of Secondary Market Based Private Equity Indices 

A. Selection and Pricing Equations 

Table II reports estimates of the parameters for the selection and pricing equations specified in (31) 

and (33). Columns (1) through (4) report results for the Heckman model, while Columns (5) and (6) report 

basic OLS estimates of the pricing equation without the inverse Mills ratio.  We estimate standard errors 

for the Heckman model using a panel bootstrap, that accounts for the inverse Mills ratio being a generated 

regressor, and cluster by time. We estimate White (1980) standard errors for the OLS model and cluster by 

time. 

< INSERT TABLE II HERE > 

The estimates presented in columns (1) and (2) suggest that a number of variates are associated 

with fund selection. First, our proposed pension fund instrument does predict selection into the transaction 

sample even after controlling for other variables. Pension funds appear to be substantially less likely to sell 

than their institutional investor counterparts. In addition, funds are more likely to transact in quarters with 

a higher TED spread and in quarters with higher total industry assets under management. Among the fund-

specific variables, larger and older funds are more likely to transact than smaller and younger funds, 

consistent with the idea that larger and older funds may be associated with less asymmetric information or 

lower relative transaction costs. Four to nine-year-old fund transactions are the most common age type in 

our data in terms of absolute number but the percentage of four-to-nine-year-old funds that transact is 

smaller than the percentage of older funds that transact. Table 2 also indicates that transacting funds tend 
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to have lower average PMEs at the time of the transaction after controlling for other variates. This finding 

suggests that sellers tend to bring lower performing funds to market, all else equal.   

Columns (3) and (4) of Table 2 report Heckman (1979) estimates of the parameters for the pricing 

equation given in (27), with the log-book-to-market ratio, 𝜃௜௧, as the dependent variable. A Campbell-

Shiller (1988) decomposition indicates that higher values of 𝜃௜௧ is associated with either higher market 

discount rates, lower book discount rates, or higher future book-to-market ratios.  We illustrate this 

decomposition and show empirically that all variation in 𝜃௜௧ is associated with variation in long run market 

discount rates in section 7.1.   

Column (3) of Table II indicates that 𝜃௜௧ tends to be higher when the log-book-to-market ratio for 

public equities is high, with the coefficient on logሺ𝐵𝑀௧ሻ equaling 0.79 (t-statistic = 3.8). The estimates 

imply that a one standard deviation shock to logሺ𝐵𝑀௧ሻ leads to an expected change in 𝜃௜௧ of 0.18, 

approximately 1/3 of the standard deviation of 𝜃௜௧. Our index tends to have a higher future expected return 

when the public book-to-market ratio is high, i.e., when prices for public equities are relatively low. Another 

important explanatory variable in the pricing equation is the overall industry assets under management 

(𝐼𝐴𝑈𝑀௧). The coefficient on 𝐼𝐴𝑈𝑀௧ is -0.20 with a t-statistic of -2.4. A one standard deviation shock to 

𝐼𝐴𝑈𝑀௧ is associated in a change in 𝜃௜௧ of -0.19, again, approximately 1/3 of the standard deviation of 𝜃௜௧.  

Future expected returns for our index, as indicated by a higher book-to-market ratio, tend to drop with 

overall industry assets under management. This finding is similar to that of Pastor, Stambaugh, and Taylor 

(2015), who find empirical evidence for decreasing returns to scale in active mutual fund management at 

the industry level.     

The coefficient on the inverse Mills ratio in the pricing equation is not significantly different from 

zero, with a point estimate of 0.06 and a t-statistic of 0.3. After controlling for our chosen economy-wide 

and firm-specific characteristics, innovations in price and selection appear to be uncorrelated.  In this case, 

even OLS estimates of the pricing equation are consistent. In fact, the OLS estimates of the pricing equation 

(Columns (5) and (6)), are very close to those of the Heckman estimates of the pricing equation.   
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B.  Private Equity Indices over Time 

 We create two equally weighted market PE indices, one using funds of all ages, and a second using 

only funds that are 4-9 years old. Figure 2 graphs our private equity indices over the 2006-2018 sample 

period on a log scale. For comparison we also present the performance of the public equity market (from 

Ken French’s website), two equally-weighted indices based on Preqin reported NAVs, (one using funds of 

all ages and another using only funds that are four to nine years old), the Burgiss index, and the S&P Listed 

Private Equity Index.  We create the Preqin indices using the same population of funds that we use to create 

the market-based PE indices and measure the return as the cross-sectional average of exp൫𝑛௜,௧ାଵ൯ െ 1 where 

𝑛௜,௧ାଵ is the log return defined in (19).  Our Preqin indices are quite similar to the Burgiss index. The 

correlation between our Preqin index (all ages) and the Burgiss index is 0.97, while the correlation between 

our Preqin index (4-9 years) and the Burgiss index is 0.95.     

  Figure 2 illustrates that the two market PE indices are more volatile than the three NAV-based 

indices (Preqin (all ages), Preqin (4-9 years), and Burgiss).  The well-known excessive “smoothness” of 

NAVs is generally attributed to the use of stale information by general partners.  It is also possible that 

NAVs may not fully reflect variation in market discount rates.  We further explore this issue in section 

VI.A. The only sharp decline in equity markets during our sample period occurred during the 2008 Financial 

Crisis. During this period, the NAV indices declined somewhat because assets were written down, but did 

not decline nearly as much as public equity markets.  In contrast, the decline in the market PE indices over 

2008 is similar to that in public equity markets. Over 2008 the public equity market index declined 37%, 

the S&P Listed Private Equity Index declined 64%, while the market PE index (all ages) declined 60%.  

Our Preqin NAV-based index (all ages), on the other hand, only fell by 25%, and the Burgiss NAV-based 

index dropped by only 27% during 2008.  Even though private equity NAVs were written down by nearly 

one quarter of their value during the 2008 Crisis, their actual value most likely declined similar to public 

equity markets at that time.  

< INSERT FIGURE 2 HERE > 
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C. Risk and Return of Private Equity Indices 

 In this section we report estimates of expected returns, beta, alpha, volatility, and Sharpe ratios for 

market-based indices of buyout funds. To implement the Dimson (1979) adjustment, we report regressions 

of index returns on lagged market returns in Table III. The first four columns report estimates for the two 

market-based PE indices, while the remaining columns contain estimates for the S&P Listed Private Equity 

Index, Preqin, and Burgiss indices.  We compute standard errors by GMM using the Newey West (1987) 

estimate of the spectral density matrix.16  

< INSERT TABLE III HERE > 

Each of the NAV-based indices loads significantly on lagged market returns through three lags. 

The S&P Listed Private Equity Index appears to be uncorrelated with lagged market returns. We find that 

the market-based PE indices load significantly on lagged market returns through only one lag. The estimates 

in Table III suggest that when applying adjustments based on Dimson (1979), we should account for cross-

autocorrelation with market returns at one lag for the market-based PE index, at three lags for the NAV-

based indices, and zero lags for the S&P Listed Private Equity Index.   

Table 4 reports index parameter estimates for the various indices including the market-based PE 

indices. For this table we compute GMM standard errors using the Newey West (1987) spectral density 

matrix along with the delta method, as needed. Consistent with Figure 2, the estimates in Table IV indicate 

that buyout funds have performed well over our sample period. The average return for the market-based 

index using funds of all ages is 14% and  using funds that are 4-9 years old is 22%. In contrast, NAV-based 

index returns have averaged from 11-14%, while the S&P Listed PE Index averaged a return of only 9% 

over our sample period.  

< INSERT TABLE IV HERE > 

 
16 The market-based PE indices contain measurement error that is reasonably independent of the actual index return. 

Since this measurement is reflected in the dependent variables of our regressions, it is absorbed in the regression 

residuals. 
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Our market-based index using funds of all ages is 1.79, and for 4-9 year-old funds is 1.76.  These 

estimates are larger than most betas reported in prior literature.  As discussed above in previous sections, 

betas estimated using cash flow data are unlikely to pick up variation in PE discount rates that are manifest 

in actual market prices for PE.  To understand the magnitude of our estimate, recall that private equity funds 

are portfolios of equity positions in leveraged buyouts. Since buyouts tend to be much more highly levered 

than public firms, Modigliani-Miller Proposition 2 implies that buyouts should have substantially higher 

betas than public firms. For example, Axelson, Jenkinson, Strömberg, and Weisbach (2013) report a mean 

debt-to-total-capital ratio of 70% in their sample of 1,157 LBOs, with mean leverage closer to 50% during 

our 2006-2018 sample period. In contrast, typical large publicly traded firms have approximately a 20-25% 

debt-to-total-capital ratio. If the firms experiencing buyouts have asset betas equal to 1, that reflect both 

discount-rate and cash-flow effects, and debt betas are positive but relatively small, the equity portion of 

the LBO should nonetheless have a beta close to 1.60-1.80, which is consistent with our estimates.17   

For the market PE index using funds of all ages, we document an alpha of -2% annually.  The vast 

majority of the literature finds that buyout funds outperform after accounting for risk manifest in PE cash 

flows.  Our alpha accounts for both the covariance of cash flows with the SDF, as well as the covariance of 

discount rates with the SDF.  The alpha of the market PE index using 4-9 year-old funds is estimated to be 

relatively high at 6% annualized (though insignificant). It’s possible that funds may tend to perform better 

as they acquire assets, though we cannot reject the null that the alpha for 4-9 year-old funds is zero.  

Using log returns we find betas of 1.95 using funds of all ages and 1.86 using 4-9 year-old funds.  

The adjusted alphas under the normal assumption for both indices are both very close to zero.  We report 

these results together with those of other robustness tests in Appendix Table HI.  

The S&P Listed Private Equity Index produces a beta of 1.74, which is similar to that of our market-

based PE index. Average returns and alphas, however, are quite different. The S&P Listed PE index earned 

an average a return of 9% (t-statistic of 1.0) and an alpha of -7% over our sample period (t-statistic of -2.7). 

 
17 See Axelson, Sorensen, and Strömberg (2014) for more discussion. 
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Relative to other indices in Table IV, the estimated volatilities and betas for the NAV indices are 

quite low. These results suggest that NAV-based indices, even after Dimson adjusting, fail to capture 

important dynamics in private equity that is related to public equity markets, such as variation in discount 

rates.  We further explore this issue in Section VI.A. Adding more lags to the Dimson adjustment does not 

cause the betas of NAV-based indices to become more similar those of the transaction-based indices or the 

S&P Listed Private Equity Index.18  In addition, there is a large difference in volatility between the market-

based PE indices (about 34%) and the NAV-based indices (ranging from 14% to 20%).  The volatility of 

the S&P Listed Private Equity Index (30%) is also larger than the NAV-based indices.  We provide evidence 

in section VI.A that NAV-based indices do not fully account for variation in market PE discount rates, 

which represents another cause for NAV smoothness above and beyond stale information.  

VI. Discount-Rate Risk in Private Equity 

In this section we explore two questions. First, how much do private equity discount rates vary over 

time? Second, to what degree does the discount rate premium identified in Section 3.2 and Equation 17 

empirically create a wedge between GPME and alpha? To answer the first question, we run regressions of 

long-run private equity secondary market returns on log book-to-market ratios motivated by the Campbell-

Shiller (1988) present value identity.  To answer the second question, we empirically estimate and compare 

unconditional GPME for the funds in our index with the unconditional SDF alpha of the index itself.  We 

then also estimate and compare these two performance measures for a set of synthetic funds that invest in 

US public equities.  

A.  Variation in Book-to-Market Ratios and Discount Rates  

 In this section we explore how much private equity discount rates vary over time.  Equation (26) 

shows that the difference in log-market returns and log-book returns can be written as a linear function of 

 
18 Even if we include seven lags in the Dimson adjustment as suggested by Metrick and Yasuda (2010), we find that 

NAV-based betas over our sample period are only 0.73 to 0.85. 
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book-to-market ratios to a first-order approximation (Vuolanteenaho (2002)). Taking a cross-sectional 

average of the relation specified in (26) across funds, we obtain 

 
1
𝑁
෍𝑛௜,௧ାଵ െ 𝑟௜,௧ାଵ

ே

௜ୀଵ

ൌ
1
𝑁
෍𝜌௜,௧ାଵ 𝜃௜,௧ାଵ െ 𝜃௧

ே

௜ୀଵ

, (35) 

which can be written as  

 𝑛ത௧ାଵ െ �̅�௧ାଵ ൌ �̅�௧ାଵ �̅�௧ାଵ െ  �̅�௧ ൅ 𝑐ఘ̅ఏ,௧ାଵ, (36) 

where 𝑐ఘ̅ఏ,௧ାଵ denotes the empirical covariance between 𝜌௜,௧ାଵ and 𝜃௜,௧ାଵ in the cross section across funds, 

As explained in section III.B and Appendix B, the approximation parameter, 𝜌௜,௧ାଵ, can only take on one 

of three values, all close to 1.0. We empirically find time series variation in �̅�௧ାଵ to be trivially small, with 

a quarterly standard deviation of about 0.01 over our sample. Further, the mean value of �̅�௧ାଵ across time 

is statistically indistinguishable from 1.0.  We therefore motivate the empirical exercise of this section by 

setting �̅�௧ାଵ ൌ 1 in each quarter.      

 Iterating on (36) through time 𝑡 ൅ 𝑘 after setting �̅�௧ାଵ ൌ 1 and taking expectations conditional on 

information at time 𝑡 we obtain, 

 �̅�௧ ൌ ෍𝐸௧ሾ�̅�௧ା௝ሿ െ 

௞

௝ୀଵ

෍𝐸௧ሾ𝑛ത௧ା௝ሿ

௞

௝ୀଵ

൅ 𝐸௧ሾ𝜀௧ା௞ሿ (37) 

where 𝜀௧ା௞ is given by 

 𝜀௧ା௞ ൌ෍𝑐ఘ̅ఏ,௧ା௝  

௞

௝ୀଵ

൅ �̅�௧ା௞ .  (38) 

Equation (37) says that variation in the average log book-to-market ratio, �̅�௧, must be associated with 

variation in market PE discount rates, 𝐸௧ሾ�̅�௧ା௝ሿ, variation in book discount rates used to compute NAV, 

𝐸௧ሾ𝑛ത௧ା௝ሿ, or variation in 𝐸௧ሾ𝜀௧ା௞ሿ.  We can better understand this variation by regressing long-run market 

returns, long run book returns, and long run values of 𝜀௧ା௞ on �̅�௧ in three separate regressions.  

 ∑ �̅�௧ା௝
௞
௝ୀଵ ൌ 𝑎௥ ൅ 𝛽௥�̅�௧ ൅ 𝑤௥,௧ା௞   (39) 
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െ∑ 𝑛ത௧ା௝
௞
௝ୀଵ ൌ 𝑎௡ ൅ 𝛽௡�̅�௧ ൅ 𝑤௡,௧ା௞   

𝜀௧ା௞ ൌ 𝑎ఌ ൅ 𝛽ఌ�̅�௧ ൅ 𝑤ఌ,௧ା௞  

Given the relation provided in (37) it follows that  

 1 ൌ 𝛽௥ ൅ 𝛽௡ ൅ 𝛽ఌ. (40) 

We can interpret the slope coefficients, 𝛽௥, 𝛽௡, and 𝛽ఌ as the fraction of variation in �̅�௧ associated with its 

ability to predict future PE returns, book returns, and 𝜀௧ା௞ (Cochrane (2011)).      

 In Table V we report results for the slope coefficients of the three regressions given in (39).  Given 

the evidence of Table III that lagged returns predict future returns due to non-synchronous trading and stale 

NAVs, we estimate these regressions with and without controlling for lagged transaction and book returns. 

Including lagged transaction returns on the right side of these regression, in particular, may help control for 

elements of �̅�௧ that overlap with �̅�௧ାଵ from non-synchronous prices. On the left of each panel we report 

results using �̅�௧ as the sole explanatory variable.  On the right we report results that also control for �̅�௧, and 

𝑛ത௧ as explanatory variables.  In all panels the dependent variable is either �̅�௧ା௝, 𝑛ത௧ା௝, or 𝜀௧ା௞.  Data is 

quarterly. Panel A reports results for 𝑘 ൌ 1 (1 quarter). Panels B and C report results for overlapping 

regressions where 𝑘 ൌ 4 (1 year) and 𝑘 ൌ 20 (5 years).  We compute Hansen-Hodrick (1980) standard 

errors that account for the overlapping returns in our regressions, taking the estimated book-to-market ratios 

from our index as given.   

< INSERT TABLE V HERE > 

On the left of Panel A we see that at the quarterly horizon, about 89% of the variation in book-to-

market ratios is associated with its ability to predict 𝜀௧ା௞.  The value of  𝛽ఌ on the left of Panel A is estimated 

to be 0.89, is highly significant, and the 𝑅ଶ of this regression is 0.75. These results are driven by persistence 

in book-to-market ratios.  Regressing 𝑐ఘ̅ఏ,௧ାଵ alone on �̅�௧ produces an insignificant slope coefficient of 

0.0002.  In addition, while the estimate of 𝛽௥ is small and insignificant on the left of Panel A, the estimate 

jumps to 0.31 and becomes significant after controlling for lagged returns on the right of Panel A.  
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In Panel B of Table V we see that at longer horizons, more variation in book-to-market ratios is 

explained by its ability to predict returns.  In the regression of annual returns on book-to-market ratios one 

year prior given in Panel B, the estimated value of  𝛽௥ is 0.45 but still insignificant.  After controlling for 

lagged returns the estimate of  𝛽௥ increases to 0.65, though still insignificant. Still in Panel B, most of the 

variation in book to-market ratios is associated with its ability to predict 𝜀௧ା௞.  The estimated value of 𝛽ఌ 

in on the left Panel B is 0.83 and is 0.56 after controlling for lagged returns on the right of Panel B.   

In Panel C of Table V, the estimated value of 𝛽௥ for the regressions of 5-year returns on book-to-

market ratios five years prior is 1.65, is highly significant, and the 𝑅ଶ is 54%.  In contrast, estimates of 𝛽௡ 

and 𝛽ఌ are insignificant in Panel C.  In fact, estimates of 𝛽௡ are insignificant in all panels, and in Panel C, 

the point estimate of 𝛽௡ is negative. The negative coefficient on 𝛽௡ is consistent with the hypothesis that 

book discount rates respond weakly to and are positively correlated with market discount rates.19  

Controlling for lagged returns makes little difference in the long-run regressions of Panel C.  As might be 

expected, quarterly returns have little power to predict five-year returns even when prices are non-

synchronous throughout each quarter. As such, controlling for  lagged transaction and book returns in these 

regressions makes little difference in results.   

Expected long-run PE returns in (39) are given by 𝛽௥�̅�௧, and an estimate of the variation in long-

run expected PE returns is given by 𝛽௥ଶ𝑉𝑎𝑟ሺ�̅�௧ሻ. We estimate 𝑉𝑎𝑟ሺ�̅�௧ሻ to be 0.05 (using annual data), 

implying that the standard deviation of five-year expected PE returns is 0.37.  Cochrane (2011) estimates 

the standard deviation of five-year expected returns for the public market portfolio using annual data to be 

0.29.  The beta of our index, however, is 1.79 whereas Cochrane’s results are for a unit-beta portfolio.  

 
19 Consider a regression of negative book returns on market returns, െ∑ 𝑛ത௧ା௝

௞
௝ୀଵ ൌ 𝛾଴ ൅ 𝛾ଵ ∑ �̅�௧ା௝

௞
௝ୀଵ ൅ 𝑧௧ା௞.  Then 

𝐶𝑜𝑣൫െ∑ 𝑛ത௧ା௝
௞
௝ୀଵ , �̅�௧൯ ൌ  𝛾ଵ𝐶𝑜𝑣൫∑ �̅�௧ା௝

௞
௝ୀଵ , �̅�௧൯ ൅ 𝐶𝑜𝑣ሺ𝑧௧ା௞, �̅�௧ሻ and 𝛽௡ ൌ 𝛾ଵ𝛽௥ ൅ 𝛽௭ where  𝛽௭ is the slope 

coefficient in a regression of 𝑧௧ା௞ on �̅�௧.  In this case, 𝛽௡ may be less than zero if 𝛾ଵ is sufficiently negative 

(implying a positive relationship between book and market returns) and 𝛽௭ is sufficiently small.  For five-year 

returns we estimate 𝛾ଵ to be -0.39 and 𝛽௭ to be 0.20. A similar explanation illustrates why 𝛽௥ is above 1.0.  
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Hence, a more appropriate comparison from public markets is the standard deviation of five-year expected 

returns for a levered market portfolio with a beta of 1.79, that is, 1.79 ൈ 0.29 ൌ 0.52.  From this 

perspective, variation in PE discount rates may be somewhat less than variation in public market discount 

rates.   Variation in risk aversion and sentiment of the marginal investor in private equity may be somewhat 

muted relative to that of the marginal investor in public equity. In contrast, however, the standard deviation 

of book discount rates is only 0.10.  NAVs are too smooth from the perspective of an investor with access 

to secondary markets, not only because they reflect stale information, but also because they fail to reflect 

variation in market discount rates for PE. 

B. GPME and Alpha: Real and Simulated Funds 

Equation (17) illustrates the relationship between unconditional GPME and unconditional alpha. 

In this section we report empirical estimates of unconditional GPME using funds in our index and the 

unconditional SDF alpha of the index itself.  To further investigate the relation between GPME and alpha 

as empirical measures of performance, we then create a set of synthetic PE funds that invest in US public 

equities and compare estimates of GPME and alpha for these funds.   

Our approach to estimate GPME and conduct inference is identical to that in Korteweg and Nagel 

(2016),20 and here we highlight only a few details. The SDF we use may be interpreted as the CAPM SDF 

that arises within a representative-agent i.i.d. economy under the assumption of constant relative risk 

aversion (Giovannini and Weil (1989)), 

 𝑀௧:௧ା௝ ൌ exp൫𝑎଴𝑗 ൅ 𝑎ଵ𝑟௠,௧:௧ା௝൯, (41) 

where 𝑟௠,௧:௧ା௝ is the log market return from 𝑡 to 𝑡 ൅ 𝑗, and 𝑎଴ and 𝑎ଵ are parameters chosen to price two 

benchmark funds created for each PE fund in the sample.  The two benchmark funds for PE fund 𝑖 make 

capital calls and distributions to mimic the timing of flows to PE fund 𝑖 following a specified algorithm, 

where one benchmark fund invests all capital in a publicly traded market index fund and the other invests 

all capital in short-term t-bills.  Parameters 𝑎଴ and 𝑎ଵ are chosen such that the average realized GPMEs for 

 
20 We thank these authors for supplying us with Matlab code. 
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the two benchmark funds across all PE funds in the sample are both identical to zero.  To conduct inference, 

we compute a GMM 𝐽-statistic to test the null that GPME pricing errors across all funds are zero.   

We build our market private equity index using funds with recorded cash flows in Preqin from 

2006 through 2018.  The vintages of these funds span from 1988 through 2018.  We scale all cash flows to 

a $1 commitment and use NAV as a terminal value for funds not yet liquidated by the end of our sample. 

We find the GPME for funds in our index to be 0.26 with a 𝐽-statistic p-value of 0.31.  Korteweg and Nagel 

(2016) report the GPME for venture capital funds of pre-1998 vintage to be 0.423 and of post 1998 vintage 

to be 0.048. Our point estimate of the GPME for buyout funds in our index is about two-thirds that of 

venture funds pre-1998, a period of strong performance for venture funds.  Although economically 

meaningful, the point estimate is not significantly different from zero which highlights the general difficulty 

of precisely measuring GPME with short samples and overlapping cash flows.  We also find the average 

annualized IRR for funds in our index to be 13.8%. 

Using the same SDF that we use to estimate GPME given in (41), we also measure the SDF alpha 

of our index as 

 𝛼 ൌ 𝑅ത௧ െ
1

𝑀ഥ௧:௧ାଵ
൅
𝑉𝑎𝑟ሺ𝑀௧:௧ାଵሻ

𝑀ഥ௧:௧ାଵ
𝛽ெ (42) 

where 𝑅௧ is the gross index return and 𝛽௠ represents a Dimson-adjusted beta of  𝑅௧ାଵ relative to 𝑀௧:௧ାଵ.21    

To measure the t-statistic for our estimate we first estimate the GMM-Newey-West covariance matrix of 

the components of (42) taking the SDF parameters as given, and then estimate the standard error for 𝛼 using 

the delta method. For our index, we estimate the SDF alpha to be 5.4% on an annualized basis with a t-

statistic of 0.40.  The annualized unconditional CAPM alpha for our market-based index is െ2% (reported 

in Column (1) of Table IV), and is also statistically insignificant.  While the GPME is economically 

meaningful, the SDF and CAPM alphas are relatively less impressive.  

 
21 We use one lag in the Dimson adjustment given the evidence of columns 1 and 2 of Table III.  
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Given that unconditional alpha is zero, Equation (17) illustrates that the wedge between GPME and 

alpha emerges from a discount-rate risk premium that lowers alpha relative to GPME.  While our empirical 

results suggest that such a wedge from a positive discount-rate risk premium exists among the private equity 

funds we study, we lack power to estimate GPME with much precision using the overlapping cash flows 

of the funds in our universe. Statistically, we cannot reject that GPME itself is zero.   In addition, our results 

may be driven by specific features of PE secondary markets, transaction costs, or the manner in which we 

construct our PE secondary market indices.  To provide further evidence that discount-rate risk separates 

cash-flow based measures of performance from standard measures, we estimate GPME and alpha using a 

group of investments in public companies where valuations and portfolio construction are transparent, and 

where transaction costs are minimal.   

We sort stocks with share code 10 and 11 from the CRSP universe into size decile portfolios and 

create the cash flows for a series of artificial PE funds that make capital calls and invest all capital in an 

assigned size decile portfolio from 1980 to 2018.  To create the cash flows for these artificial funds, we 

adopt the same mimicking algorithm of Korteweg and Nagel (2016) to create the benchmark funds 

necessary to estimate GPME.  The timing of cash flows for our artificial funds mimic those of a 

“representative fund” which we create by averaging cash flows across all PE funds in our sample after 

scaling all flows to a $1 commitment and aligning them in fund-inception time.  Cash flows for this 

representative fund are given in Figure 3. For each decile, a new fund begins with a capital call every six 

months, invests all capital in the assigned decile portfolio, makes subsequent calls and distributions to 

mimic the timing of cash flows of the representative fund, and liquidates after 10 years.   We relegate further 

details of creating our artificial funds to Appendix F.  The end result is a series of overlapping cash flows 

for 590 artificial funds, 59 funds for each decile portfolio. We then estimate the unconditional GPME using 

the cash flows of funds for each decile, and compare this estimate with the estimated SDF and CAPM 

alphas for the same decile portfolio over the same period.  To estimate the SDF alpha and its corresponding 
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t-statistic, we follow the same approach that we use to estimate the SDF alpha and corresponding t-statistic 

for our index.    

< INSERT FIGURE 3 HERE > 

Table VI reports results for the artificial funds. Column (1) reports the decile in which the funds 

invest capital. In column (2) we report the average equity market cap of firms for each decile in year-2020 

dollars. Decile-1 funds purchase public firms with an average market cap of $17 million, while decile-10 

funds purchase public firms with an average market cap of $87 billion.  Pitchbook reports the median 

buyout deal size in 2012, the midpoint of our sample, to be about $80 million and in 2018, the end of our 

sample, to be about $150 million (Pitchbook (2022)).  Assuming a 25% debt to total capital ratio, decile-3 

firms, with an average market cap of $81.6 million, have total firm values of about $106.8 million, and are 

roughly comparable to the median buyout deal size of funds over our sample as reported by Pitchbook. At 

the bottom of column (2) we report that the average number of firms per decile across time is 538.  

 In column (3) of Table VI we report the average IRR for each set of artificial funds.  The average 

IRR for decile-3 is 10%, a little lower than the 13.8% average IRR we estimate for funds in our index. The 

artificial funds which invest in raw public equities, however, are likely to entail less leverage than funds in 

our index. For example, Axelson et al. (2013) report a mean debt-to-total-capital ratio of 70% in their 

sample of 1,157 LBOs, with mean leverage closer to 50% during our 2006-2018 sample period. In contrast, 

typical large publicly traded firms have approximately a 20-25% debt-to-total-capital ratio. Greater leverage 

would increase the IRRs of our artificial funds to some degree.   

< INSERT TABLE VI HERE > 

In column (4) of Table VI we report the estimated GPMEs for funds that invest in each of the size 

decile portfolios and in column (5) we report the p-value of the GMM 𝐽-statistic.  All GPMEs are 

statistically significant, and all are positive except funds that invest in the largest decile.  GPME is estimated 

with greater precision for our artificial funds than for funds in our index because the cash flows for our 

artificial funds span a longer time sample and exhibit less-overlap.  GPMEs of funds that invest in smaller 
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companies are especially large.  The GPME for decile-3 funds is estimated at 0.193 while the GPME for 

funds in our index that entail somewhat greater leverage is estimated to be a little higher at 0.26, as reported 

above.  

Column (6) of Table VI reports the SDF alphas for each decile portfolio, and column (7) reports 

the p-value associated with the GMM t-statistic.  We report p-values to be consistent with column (5). In 

contrast to GPME, SDF alphas are all statistically insignificant and tend to be especially low for funds that 

invest in small-cap stocks.  The SDF alpha for decile-3 funds is -0.009 with a p-value of 0.91. Additional 

leverage would only make this p-value more negative. Hence, columns (4) and (6) provide compelling 

evidence that a positive discount-rate risk premium exists, as defined in Equation (17) using the SDF given 

in (41), for firms that are about the same size as companies purchased by funds in our index. Given that the 

SDF alpha is zero, Equation (17) shows that GPME can only be positive if the discount-rate risk premium 

is positive. This positive discount-rate risk-premium lowers alpha relative to GPME. 

  Column (8) reports the standard CAPM alpha for each decile portfolio, and column (9) reports the 

p-value associated with the GMM-Newey-West  𝑡-statistic. Here we see that all CAPM alphas are 

insignificant and close to zero.  

In summary, our empirical results suggest that GPME does not appropriately represent the marginal 

utility gain from an incremental investment in private equity for a myopic one-period investor who has 

access to PE secondary markets and currently holds positions in a stock market fund and risk-free bonds. 

Transitory price fluctuations that arise from variation in market discount rates can generate a meaningful 

distinction between GPME and CAPM alpha.  

   Given the CAPM SDF of Korteweg and Nagel (2016) that we use in our empirical work, our 

results do not speak to the dynamic portfolio selection problem in private equity.  We believe this can be 

an interesting avenue for future research. The expected utility of an unconstrained dynamic LP with 

secondary market access must be at least as high as the expected utility of a constrained buy-and-hold LP, 

since the buy-and-hold strategy is among the possible dynamic strategies the unconstrained investor can 
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pursue.  Given that some future PE cash flows are negative, however, it may be optimal for some 

unconstrained LPs to preserve the option to acquire a stake in a PE deal at potentially favorable secondary 

prices while avoiding high capital calls that potentially arrive in bad states of the world, rather than locking 

into PE contracts directly with GPs.  While expected utility is always higher for investors that face fewer 

constraints and costs, the marginal utility gain from an incremental investment in PE may at times be lower 

for an unconstrained dynamic LP than for a buy-and-hold LP.  Among other things, to better understand 

the optimal dynamic portfolio allocation problem, we need to better understand the constraints and costs 

that prevent LPs from more fully engaging in PE secondary markets. These may include reputational costs 

with GPs who may not like having their PE stakes sold in secondary markets and may shut LPs out from 

future deals.     

VIII. Conclusion 

Measuring the performance of private equity investments has historically only been possible using 

cash-flow data. However, in recent years, a secondary market has developed in which investors in private 

equity funds can trade their stakes. Prices from this market provide a source of data useful for measuring 

the risk and return of private equity funds in a similar manner to that commonly used to measure returns 

for other securities.    

We construct indices of buyout performance using a proprietary database of secondary market 

prices of private equity stakes between 2006 and 2018 while carefully accounting for sample selection. 

Analysis of these indices indicates that discount rates in private equity vary considerably, an insight that is 

not readily available from cash-flow based measures of private equity performance.  We confirm this result 

in multiple ways. First, we derive the theoretical relation between the unconditional GPME of Korteweg 

and Nagel (2016) and the unconditional alpha when both are measured relative to the same stochastic 

discount factor (SDF).  We show that alpha accounts for a discount-rate risk premium that creates a wedge 

between the two measures.  We empirically find that our market-based indices of buyout funds track public 

equity much more closely than the NAV-based indices we consider. The buyout indices we construct have 
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market betas of about 1.79, consistent with the notion that buyouts with increased leverage have higher 

betas, in marked contrast to the NAV-based indices, whose Dimson-adjusted betas are estimated to be 

around 0.8. Using our indices we show in simple Campbell-Shiller regressions that discount rates for PE 

are much more variable than book discount rates, and perhaps somewhat less variable than discount rates 

for public equity. Even after using standard approaches to adjust for known staleness, NAVs still appear 

too smooth from the perspective of an investor with access to secondary markets because they fail to reflect 

variation in market discount rates for PE. Our indices produce CAPM alpha to be close to zero and 

insignificant, while GPME for funds in the index is economically large. We also show for a sample of 

synthetic funds that invest in public equities that GPME is large and statistically significant while CAPM 

alpha is virtually zero. Our empirical results suggest that GPME does not appropriately represent the 

marginal utility gain from an incremental investment in private equity for investors with access to secondary 

markets.  

 The buyout indices we construct have a number of potential uses for investors. Better estimates of 

private equity risk and return should affect the optimal portfolio decisions of investors when deciding on 

the allocation to private equity in their portfolios. In addition, the indices can be used to provide more 

accurate valuations of stakes in private equity funds that investors hold in a manner similar to the “matrix 

pricing” approach commonly used to price illiquid bonds. Appendix G describes such an approach and 

provides annual estimates of market values for 2002-2014 vintage funds. Our results suggest that the use 

of NAV for valuation, as done by most LPs, can be misleading, and that NAVs often substantially misstate 

the value of an investor’s private equity holdings. For example, the market-to-book ratios of funds during 

the financial crisis reached as low as 0.60 and were as large as 1.4-1.5 in the years coming out of the crisis.  

Improving these valuations is likely to affect investors’ decisions about both the portfolio allocations and 

the amount they spend from their invested assets. 

 Undoubtedly, there are uses for the indices we have not discussed in this paper.  For example, one 

could design derivative contracts based on an index of private equity returns. These derivatives could 

potentially be useful to LPs who wish to hedge risks in their portfolios, much like “buy-and-hold” 
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corporate bond investors use credit and interest-rate swaps to regularly optimize and rebalance their 

portfolios without having to trade the underlying bonds.  Better indices of private equity performance 

such as the ones presented here clearly have much to offer the private equity community. 
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Appendix A.  Implicit Betas in NPV and GPME   

This appendix shows how NPV and GPME can be written in terms of pre-determined discount rates and 

highlights the implicit betas in these valuation measures. To start, note that for any random payoff, 𝑍௧ା௝ , 

 𝐸௧ൣ𝑀௧:௧ା௝𝑍௧ା௝൧ െ 𝐶𝑜𝑣௧ൣ𝑀௧:௧ା௝ ,𝑍௧ା௝൧ ൌ 𝐸௧ൣ𝑀௧:௧ା௝൧𝐸௧ൣ𝑍௧ା௝൧ (A.1) 

which implies 

 
1

𝐸௧ൣ𝑀௧:௧ା௝൧
െ ቆ

1

𝐸௧ൣ𝑀௧:௧ା௝൧
ቇ  𝐶𝑜𝑣௧ൣ𝑀௧:௧ା௝ ,𝑅௭,௧ା௝൧ ൌ

𝐸௧ൣ𝑍௧ା௝൧

𝐸௧ൣ𝑀௧:௧ା௝𝑍௧ା௝൧
, (A.2) 

 where 𝑅௭,௧ା௝ denotes the return for payoff 𝑍௧ା௝ at the zero-NPV price, 

 𝑅௭,௧ା௝ ൌ
𝑍௧ା௝

𝐸௧ൣ𝑀௧:௧ା௝𝑍௧ା௝൧
. (A.3) 

But then assuming the SDF 𝑀௧:௧ା௝ prices the risk-free asset, we have 

 𝐸௧ൣ𝑀௧:௧ା௝𝑍௧ା௝൧ ൌ
𝐸௧ൣ𝑍௧ା௝൧

𝑅௙,௧:௧ା௝ െ 𝜆௧ሺ௧ା௝ሻ𝛽௭,௧ሺ௧ା௝ሻ
 (A.4) 

where 

 

𝑅௙,௧:௧ା௝ ൌ
1

𝐸௧ൣ𝑀௧:௧ା௝൧
 , 

𝜆௧ሺ௧ା௝ሻ ൌ
𝑉𝑎𝑟௧൫𝑀௧:௧ା௝൯ 

𝐸௧ൣ𝑀௧:௧ା௝൧
, 

𝛽௭,௧ሺ௧ା௝ሻ ൌ
 𝐶𝑜𝑣௧ൣ𝑀௧:௧ା௝ ,𝑅௭,௧ା௝൧

𝑉𝑎𝑟௧൫𝑀௧:௧ା௝൯
. 

(A.5) 

It follows that if we set 𝑍௧ାଵ ൌ 𝐸௧ൣ𝑋௜,௧ାଵ ൅ 𝑃௜,௧ାଵ൧ then 

 𝑁𝑃𝑉௜,௧ ൌ
𝐸௧ሾ𝑋௜,௧ାଵ ൅ 𝑃௜,௧ାଵሿ
𝑅௙,௧:௧ାଵ െ 𝜆௧ሺ௧ାଵሻ𝛽௜௧

െ 𝑝௜,௧ (A.6) 

where 𝛽௜௧ represents the total-return beta given by 
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 𝛽௜,௧ ൌ
 𝐶𝑜𝑣௧ൣ𝑀௧:௧ାଵ,𝑅௜,௧ାଵ൧

𝑉𝑎𝑟௧൫𝑀௧:௧ା௝൯
, (A.8) 

 and the total-return, 𝑅௜,௧ାଵ, is  

 𝑅௜,௧ାଵ ൌ
𝐸௧ሾ𝑋௜,௧ାଵ ൅ 𝑃௜,௧ାଵሿ

𝐸௧ൣ𝑀௧:௧ାଵ൫𝑋௜,௧ାଵ ൅ 𝑃௜,௧ାଵ൯൧
. (A.9) 

 Similarly, it follows that if we set 𝑍௧ା௝ ൌ 𝐸௧ൣ𝑋௜,௧ାଵ൧ then GPME can be expressed as the present value of 

all future cash flows, 

 𝐺𝑃𝑀𝐸௜,௧ ൌ ෍
𝐸௧൫𝑋௜,௧ା௝൯

𝑅௙,௧:௧ା௝ െ 𝜆௧ሺ௧ା௝ሻℬ௜,௧ሺ௧ା௝ሻ

்ି௧

௝ୀଵ

െ 𝑝௜,௧ , (A.10) 

where ℬ௜,௧ሺ௧ା௝ሻ represents the cash-flow-yield beta given by 

 ℬ௜௧ሺ௧ାଵሻ ൌ
 𝐶𝑜𝑣௧ൣ𝑀௧:௧ା௝ ,𝑌௜,௧ା௝൧

𝑉𝑎𝑟௧൫𝑀௧:௧ା௝൯
, (A.12) 

 and the cash-flow yield is 

 𝑌௜,௧ା௝ ൌ
𝑋௜,௧ା௝

𝐸௧ൣ𝑀௧:௧ା௝𝑋௜,௧ା௝൧
. (A.13) 
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Appendix B.  Returns from Book-to-Market Ratios 

In this appendix we demonstrate the derivation of Equation (20) of the paper.  Let the log return on 

a given PE fund be defined as 

 𝑟௧ାଵ ൌ ln ൬
𝑃௧ାଵ ൅ 𝑋௧ାଵ

𝑃௧
൰ (B.1) 

where 𝑃௧ is the market value of the portfolio at time 𝑡, and 𝑋௧ represents cash flows (total distributions 

minus capital calls) for the portfolio from 𝑡 െ 1 to 𝑡.  Equation (A.1) is for a single fund but here we omit 

fund-level subscripts for notational ease.  Note that 𝑋௧ may be positive, negative, or zero. Similarly, define 

the log 𝑁𝐴𝑉-based return as 

 𝑛௧ାଵ ൌ ln ൬
𝑁𝐴𝑉௧ାଵ ൅ 𝑋௧ାଵ

𝑁𝐴𝑉௧
൰. (B.2) 

If 𝑋௧ାଵ ് 0 then it follows that the difference in these two return measures can be written as 

 
𝑛௧ାଵ െ 𝑟௧ାଵ ൌ ln ൬

𝑁𝐴𝑉௧ାଵ ൅ 𝑋௧ାଵ
|𝑋௧ାଵ|

൰ െ ln ൬
𝑃௧ାଵ ൅ 𝑋௧ାଵ

|𝑋௧ାଵ|
൰ െ 𝜃௧ 

ൌ ln൫exp൫𝜂௡,௧ାଵ൯ ൅ 𝛾௧ାଵ൯ െ ln൫exp൫𝜂௥,௧ାଵ൯ ൅ 𝛾௧ାଵ൯ െ 𝜃௧ 

(B.3) 

where 

 

𝜂௡,௧ାଵ ൌ ln ൬
𝑁𝐴𝑉௧ାଵ
|𝑋௧ାଵ|

൰ , 

𝜂௥,௧ାଵ ൌ ln ൬
𝑃௧ାଵ

|𝑋௧ାଵ|
൰ , 

  𝜃௧ ൌ ln ൬
𝑁𝐴𝑉௧
𝑃௧

൰ , 

(B.4) 

and  

 𝛾௧ାଵ ൌ േ1,  

where the sign of 𝛾௧ାଵ depends on the sign of 𝑋௧ାଵ. Vuolteenaho (2002) derives a similar approximation 

scaling by dividends. Since cash flows for private equity can be negative, unlike common stock dividends, 

we scale by the absolute value of net cash flows, otherwise 𝜂௡௧ and 𝜂௥௧ are not well defined.  A first-order 

Taylor series approximation of (A.3) centered around 𝜂଴ implies 
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𝑛௧ାଵ െ 𝑟௧ାଵ ൎ 𝜌௧ାଵሺ𝜂௡௧ାଵ െ 𝜂௥௧ାଵሻ െ 𝜃௧ 

ൌ 𝜌௧ାଵ𝜃௧ାଵ െ 𝜃௧ , 
(B.5) 

where the constant of approximation 𝜌௧ାଵ is given by 

 𝜌௧ାଵ ൌ
expሺ𝜂଴ሻ

expሺ𝜂଴ሻ ൅ 𝛾௧ାଵ
. (B.6) 

Alternatively, if 𝑋௧ାଵ ൌ 0 then the second row of (A.5) holds exactly at 𝜌௧ାଵ ൌ 1.  Hence, we allow the 

constant of approximation to change depending on whether cash flows are positive, negative, or zero. 

Equation (A.5) implies 

 𝑟௧ାଵ ൎ 𝑛௧ାଵ െ 𝜌௧ାଵሺ𝜂௡௧ାଵ െ 𝜂௥௧ାଵሻ ൅ 𝜃௧ (B.7) 

which is equation (26) of the paper.  

The median value of  𝜂௡௧ across all funds/quarters in our sample is about 2.68, corresponding with 

 𝜌௧ାଵ ൌ ൜
0.94 for 𝛾௧ାଵ ൌ 1      
1.07 for 𝛾௧ାଵ ൌ െ1.    (B.8) 

Our results are quite robust to this specification and are markedly similar if we specify 𝜌௧ାଵ to be any 

value in the range from 0.90 to 0.99 for observations with 𝛾௧ାଵ ൌ 1, and in the range from 1.01 to 1.10 

for observations with 𝛾௧ାଵ ൌ െ1. For our main results we specify 𝜌௧ାଵ as in (B.8). 
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Appendix C. Log Returns 

  In this appendix we demonstrate that the realized log return on an equally-weighted portfolio is 

the average log return across assets in the portfolio to a first-order approximation.  Let 𝑅ଵ, …, 𝑅ே denote 

the gross returns on 𝑁 assets over a given period. The realized log equally-weighted portfolio return is 

 𝑟௣ ൌ ln ൥
1
𝑁
෍𝑅௜

ே

௜ୀଵ

൩ ൌ ln ൥෍𝑒௥೔
ே

௜ୀଵ

൩ െ ln ሺ𝑁ሻ (C.5) 

where 𝑟௜ ൌ lnሺ𝑅௜ሻ.  Given that 𝑟ଵ ൌ ⋯ ൌ 𝑟௡ ൌ 0, then 𝑟௣ ൌ 0 and 

 
𝜕𝑟௣
𝜕𝑟௜

ฬ
௥೔ୀ଴

ൌ
1
𝑁

 (C.6) 

Hence, to a first-order approximation around the point 𝑟ଵ ൌ 𝑟ଶ ൌ ⋯ ൌ 𝑟ே ൌ 0, 

 𝑟௣ ൎ
1
𝑁
෍𝑟௜

ே

௜ୀଵ

 (C.7) 
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Appendix D. Dimson Adjusted Volatility 

In this appendix we present a method to bias-adjust volatility when observed returns can be 

characterized by the model of Dimson (1979), who presumes that securities trade intermittently at the ends 

of specified periods.  Similar to Dimson (1979), assume that observed index returns, �̂�௧, may be written as 

 �̂�௧ ൌ ෍𝜆௝𝑟௧ି௝

௟

௝ୀ଴

൅ 𝑢௧ (D.1) 

where 𝑟௧ represents the i.i.d. “true” portfolio return based on end of quarter values and 𝑢௧ is a mean zero 

i.i.d. error term.  From (D.1) it follows that  

 
𝐶𝑜𝑣ሺ�̂�௧ , �̂�௧ିଵሻ ൌ෍𝜆௝𝜆௝ିଵ

௟

௝ୀଵ

𝑉𝑎𝑟ሺ𝑟௧ሻ 

 

(D.2) 

or rather,  

 𝑉𝑎𝑟ሺ𝑟௧ሻ ൌ
𝐶𝑜𝑣ሺ�̂�௧ , �̂�௧ିଵሻ

∑ 𝜆௝𝜆௝ିଵ
௟
௝ୀଵ

. (D.3) 

Let 𝑎 and 𝛽 denote the parameters of a linear projection of 𝑟௧ on the contemporaneous market return, 𝑟௠,௧. 

We can then write 

 �̂�௧ ൌ 𝑐 ൅෍𝜓௝𝑟௠,௧ି௝

௟

௝ୀ଴

൅ 𝜀௧ (D.4) 

where  𝑐 is a constant, 𝜓௝ ൌ 𝜆௝𝛽 and 𝜀௧ ൌ ∑ 𝜖௧ି௝ ൅ 𝑢௧
௟
௝ୀ଴  is i.i.d. and mean zero.  Dimson (1979) assumes 

∑ 𝜆௝
௟
௝ୀଵ ൌ 1, which implies ∑ 𝜓௝ ൌ 𝛽௟

௝ୀଵ .  To estimate the variance us in (D.3) we jointly estimate 

𝐶𝑜𝑣ሺ𝑟௧ , 𝑟௧ିଵሻ and 𝜓଴, … ,𝜓௠ by GMM.  We then estimate 𝜆௝ as 𝜆௝ ൌ 𝜓௝/∑ 𝜓௝
௟
௝ୀ଴   and compute the variance 

by scaling the auto-covariance as in (D.3).  We use this volatility adjustment when computing Sharpe ratios 

and correlation as well.  We compute standard errors for 𝑉𝑎𝑟ሺ𝑟௧ሻ from the GMM covariance matrix of 

estimated parameters via the delta method. 
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Appendix E: Data Details 

In this appendix we describe how we clean our data. From the transactions data we first pull all 

records for which their “detailed strategy” is classified as “Buyout”.  We then identify unique funds by 

their fund names, hand checking fund names that appear similar.  We omit funds labeled as parallel funds, 

feeder funds, annex funds, sub funds, top-up funds, duplicate funds, co-investment funds, supplemental 

funds, and side-cars. We then clean the transactions data as follows: 

1) Eliminate all funds with a total commitment less than $500M.  (Smaller funds may be unique  

in terms of secondary-market liquidity, asymmetric information, and other features that 

temper their ability to represent the performance of PE as an asset class.)     

2) Eliminate transactions with a price less than zero. (These are likely data errors.) 

3) Eliminate transactions with a NAV less than zero. (These are likely data errors.)   

4) Eliminate transactions that have the same price for every fund in the portfolio transaction.  

(These are portfolio transactions, with no price discrepancy between individual funds. 

Including such funds may introduce bias in our pricing model estimates.)   

5) Eliminate transactions for which the total amount committed by the seller minus the unfunded 

commitment is less than zero.  (These are likely data errors.) 

6) Eliminate transactions for which the total capital committed is less than or equal to zero. 

(These are likely data errors.)  

7) Eliminate transactions for which the fund name is missing.  (May be indicative of data errors 

for this record. )  

8) If multiple transactions occur on the most recent transaction date for a given fund/quarter, use 

only the transaction based on the highest total commitment. (We need to pick one transaction 

to represent the fund price for the quarter, and it seems reasonable to assume that the 

transaction with the highest commitment is the most representative.)  

9) If multiple transaction records exist with the same fund name and commitment on the most 

recent transaction date for a given fund/quarter, choose one of these transactions at random as 
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the transaction that represents the end-of-quarter transaction price. (We need to pick one 

transaction to represent the fund price for the quarter,) 

10) Eliminate all remaining transactions for which the price, as a percent of NAV, is greater than 

3 standard deviations away from the mean price across funds for a given quarter. (These are 

likely data errors, or simply not representative.)   

After pulling data from Preqin for funds with a “category_type”  equal to “Buyout”, we clean the data as 

follows: 

1) Eliminate any fund-quarters for which 𝑁𝐴𝑉௜,௧ିଵ ൌ 0, or the NAV-based return is otherwise 

missing.  Note that we retain records for which 𝑁𝐴𝑉௜,௧ ൌ 0. Once NAV hits zero, however, we no 

longer include the fund in the sample. (We can’t compute a return with zero in the denominator.) 

2) Eliminate stale NAVs, those with a report date prior to 30 days before the end of each quarter. 

(Doing so eliminates non-synchronicity in NAVs.) 

3) Identify fund-quarters for which the NAV-based return is greater than 3 standard deviations from 

the mean across all funds for a given quarter.  These returns appear to be inconsistent with 

reported IRRs from Preqin. (These are likely data errors.) 

 

We then merge our Preqin data with the explanatory variables described in Table 2, and then 

merge these data with the cleaned transactions dataset. To merge the transaction and cash-flow data, we 

first identify funds with identical fund names in the two databases and designate these as a match.  We 

then identify fund names in the transaction and Preqin data that are “similar” and that also have the same 

vintage.  Fund names A and B are considered similar if fund name A contains the first 5 characters of 

fund name B anywhere in the fund name string or vice-versa.   We then hand check this list to determine 

which funds match.  After merging we have data on 839 transactions during our sample period from 

March of 2006 through June of 2018.   
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Appendix F:   Creating Artificial Funds that Invest in Public Equities 

  To create artificial PE funds that invest in public equities, we first identify the timing of  flows for 

a “representative fund” that includes all funds in our secondary market-based PE index. The index includes 

funds with recorded cash flows in Preqin from 2006 through 2018 with vintages spanning from 1988 

through 2018.  Using this population of funds, we scale all fund flows to a $1 commitment, align flows in 

fund-inception-time (as if they all made their initial capital call at the same time) and calculate the average 

net flows across funds each quarter from fund inception to liquidation.  We use NAV as a terminal value 

for funds not-yet liquidated by the end of the sample, and eliminate funds with an initial capital call after 

December 31 2016.  These average flows represent the flows of our representative fund and are illustrated 

in Figure 3.  The initial capital call in our sample averages about 9 cents and average drawdowns in 

subsequent quarters fall in the range of 3 to 5 cents. Average net flows first turn positive in quarter 14 when 

funds are almost 4 years old, and climb to a peak of 5.02 cents at quarter 28 when funds are almost 7 years 

old.  Net flows then slowly decline to zero.  The longest lasting fund in our sample paid out its last 

distribution in the 87th quarter following its initial capital call.  The average fund in our sample lasts between 

9 and 10 years.   

 Using the relative timing and amounts of flows of the representative fund, we then use the approach 

of Korteweg and Nagel (2016) to create the cash flows for a series of benchmark funds to estimate the 

parameters of the SDF to be used in calculating GPME.  We first sort stocks into size deciles each month, 

and for each decile, create the cash flows for 59 artificial funds that make capital calls and invest the 

acquired capital into the assigned size decile portfolio.  Funds start with an initial cash flow of zero at the 

end of June and December of each year and initial capital calls occur at the end of March and September.  

For example, the first fund makes its first capital call at the end of March 1980, the second fund makes its 

first capital call at the end of September 1980, and so forth, with the last (59th) fund making its first capital 

call March of 2009.  Following the algorithm, capital calls each quarter are identical to those of the 

representative fund in fund-inception time.  If the representative fund makes a payout at the end of quarter 

𝑞 in fund-inception time, the artificial funds also make payouts at the end of quarter 𝑞 equal to the sum of 
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two components.  The first component is equal to the return accumulated since the last quarter in which a 

call or distribution was made.  The second component is equal to a fraction, 𝑓௤, of the remaining capital 

under management with         

 𝑓௤ ൌ min ൬
𝑞 െ 𝑝

40 െ 𝑝
, 1൰ (8) 

where  𝑝 is the time of the most recent payout prior to quarter 𝑞, measured in fund-inception time quarters.  

If the payout at quarter 𝑞 is the fund’s first payout, then 𝑝 ൌ 0. This assumption sets the life of each artificial 

fund to 10 years, and for our setup implies that the 59th fund pays its final distribution December of 2018.  

We proceed in this manner to create the overlapping cash flows for 59 artificial funds that invest capital in 

their assigned size-decile portfolio, and then repeat this exercise for all 10 deciles. 
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Appendix G. An Application: “Matrix Pricing” of Private Equity Funds 

 
Most funds are valued by limited partners at the NAV, which can deviate substantially from the 

best available estimate of the fund’s underlying value.  These valuations are used for a number of purposes 

by investors in funds, including portfolio allocation decisions across asset classes, and spending decisions, 

which are usually set by investors as a fixed percentage of a portfolio’s assessed value.  Examples of this 

policy approach include universities and foundations.  More accurate pricing of limited partner stakes in 

private equity funds may improve the ability of investors to make investment decisions since it may lead to 

portfolio allocations and spending rules corresponding to better estimates of the underlying values of an 

institution’s private equity investments.  

One possible approach to value stakes in private equity funds more accurately is to follow a 

procedure similar to “Matrix Pricing,” commonly used to price bonds, by which the prices of bonds that do 

not trade are determined based on the prices of bonds that do. The idea is that the same fundamentals affect 

similar bonds in the same manner, so prices of bonds that do not trade likely move approximately the same 

amount as prices of similar bonds that do trade.  Since private equity funds that invest in one type of asset 

are likely affected by a number of the same shocks to their fundamentals, they can be priced using 

comparable methods with transactions-based indices. 

For any fund, the fund’s history of quarterly cash inflows and outflows can be combined with the 

quarterly returns of the hedonic indices to calculate market values. Beginning at the end of some chosen 

quarter 𝑡 we set fund value for fund 𝑖, 𝑉௜,௧ , equal to 𝑁𝐴𝑉.  Then for all subsequent quarters we estimate 

fund value as  

 𝑉௜,௧  ൌ 𝑉௜,௧ିଵሺ1 ൅ 𝑟ு,௧ሻ ൅ 𝐶௜,௧ െ 𝐷௜,௧, (G.1) 

where 𝐶௧ and 𝐷௧ denote capital calls and distributions between times 𝑡 and 𝑡 ൅ 1, and 𝑟ு,௧ represents the 

return on our hedonic transaction-based index.    

We perform this calculation for each fund in our sample for every quarter in our sample period 

(2006 to 2018).  One version of our hedonic index is formed using transactions from funds that are between 
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four and nine years old and we use this version of the index to calculate market values for four-to-nine-

year-old funds. Following the procedure described above, we set market value equal to NAV at the end of 

the fourth year following each fund’s vintage year and iterate forward to identify market values at the end 

of subsequent quarters.22 We report year-end aggregate market-to-book ratios by vintage in Appendix Table 

HII by summing year-end market values for each fund for a given vintage and dividing by the sum of year-

end NAVs for the same set of funds.23  

Aggregate market-to-book ratios for each vintage across time are reported in the bottom of 

Appendix Table HII. Market-to-book ratios are considerably lower during the Financial Crisis, ranging 

between 0.59 and 0.76 in 2008 for the 3 vintages that were old enough for our hedonic estimation. Funds 

that invested out of 2007 and 2008 vintage funds did so at lower valuations, and therefore have high average 

market-to-book ratios in subsequent years when markets recovered. For example, these estimates indicate 

that by the end of 2016, a 2008 buyout fund has a NAV that is understated by 28% relative to its market 

value. 

Individual funds could mark their values to market using the hedonic approach in one of two ways. 

The most accurate approach would be to generate fund-specific market values using the estimated 

coefficients from our Heckman sample selection model applied to the fund’s attributes. A simpler approach, 

but one that nonetheless represents a substantial improvement over using NAVs, is to multiply the NAV of 

each of LP’s investments by the average market-to-book ratio of the industry. For example, an LP would 

multiply the NAV of each four-to-nine-year-old fund in his or her portfolio by the appropriate ratio from 

Appendix Table HII. For younger funds, the deviation between NAVs and market value is likely to be 

smaller but could be estimated using the estimated coefficients from our sample selection model. Tail-end 

 
22 For the 2005 vintage, we set NAV equal to market value at the end of year three due to irregularities in reported 

NAVs associated with the financial crisis.  

23 The 2018 market-to-book ratio is reported as of Q2 because of data availability.  
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funds will have only a few portfolio companies left and their values will vary depending on the fortunes of 

these particular investments. As such, this approach is likely to be less useful for valuing these funds.
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Appendix H: Appendix Tables 

Appendix Table HI. Robustness Checks 

In this table we report main index parameters of interest for different versions of the model and for different 

methods of estimating index parameters.  All expected returns and alphas are annualized. In Panel A we report index 

parameters for log returns after adjusting alpha as in Cochrane (2005) and Axelson, Sorensen, and Stromberg (2014).  

In a regression of log excess index returns on log excess market returns, let 𝛿 denote the intercept.  The adjusted alpha 

is given by 𝛼 ൌ 𝛿 ൅ ሾሺ1/2ሻ𝜎ூ
ଶ െ ሺ1/2ሻ𝜎ெ

ଶ𝛽ሺ1 െ 𝛽ሻሿ  where 𝜎ூ
ଶ denotes the Dimson-adjusted index variance (see 

Appendix D), 𝜎ெ
ଶdenotes the market variance, and 𝛽 denotes the Dimson-adjusted index beta using one lag.  All other 

panels report results using simple (exponentiated) returns after Dimson adjusting as discussed in the text and Appendix 

D.  In Panel B we eliminate insignificant variables from the pricing equation as reported in Columns (3) and (4) of 

Table II before constructing the index and estimating index parameters. In Panels C and D we replace state variables 

in both the pricing and selection equation with quarterly fixed effects. In Panel C we use the estimated FE from the 

prior quarter for the two quarters with no transactions (Q3/2007 and Q1/2013).  In Panel D we delete the two quarters 

with missing transactions. This causes use to lose four index return observations.  In Panels E and F we replace state 

variables in both the pricing and selection equation with quarterly fixed effects and eliminate all other variables from 

the pricing equation. In Panel E we use the estimated FE from the prior quarter for the two quarters with no 

transactions.  In Panel F we delete the two quarters with missing transactions.  Standard errors are estimated by GMM 

using the Newey West (1987) estimate of the spectral density matrix, along with the delta method.  Significance at the 

1%, 5% and 10% level of significance is indicated by “***”, “**”, and “*” respectively. 
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 Panel A. Log Returns (Adjusted Alpha)  Panel B. Narrow Pricing Eq I 

 All Ages  4-9 Yrs Old   All Ages  4-9 Yrs Old  
 (1) (2)  (3) (4)   (1) (2)  (3) (4)  

E[r] 0.08 (0.8)   0.16 (1.7) *  0.12 (1.4)   0.18 (2.1)  
b 1.95 (6.6) *** 1.86 (7.3) ***  1.76 (8.0) *** 1.73 (7.8)  
a -0.02 (0.0)  0.00 (0.0)   -0.04 (0.8)  0.02 (0.4)  
              
N (Pricing) 839   839    839   839   
N (Selection) 15,367   15,367    15,367   15,367   
N (Index) 49   49    49   49   

              
 Panel C. Quarter Fixed Effects I  Panel D. Quarter Fixed Effects II 

 All Ages  4-9 Yrs Old   All Ages  4-9 Yrs Old  
 (1) (2)  (3) (4)   (1) (2)  (3) (4)  

E[r] 0.16 (1.0)  0.23 (1.4)   0.16 (0.9)  0.22 (1.2)  
b 1.64 (3.0) *** 1.63 (3.0) ***  1.77 (3.4)  1.77 (3.4) *** 
a 0.01 (0.1)  0.08 (0.5)   0.00 (0.0)  0.06 (0.4)  
              
N (Pricing) 839 839 839 839 
N (Selection) 15,367 15,367 14,835 14,835 
N (Index) 49   49    45   45   

              
 Panel E. Quarter Fixed Effects III  Panel F. Quarter Fixed Effects IV 

 All Ages  4-9 Yrs Old   All Ages  4-9 Yrs Old  
 (1) (2)  (3) (4)   (1) (2)  (3) (4)  

E[r] 0.17 (1.0)  0.22 (1.3)   0.18 (1.0)  0.23 (1.2)  
b 1.98 (3.8) *** 1.96 (3.7) ***  2.05 (3.9) *** 2.04 (3.8) *** 
a -0.01 (0.1)  0.04 (0.3)   0.00 (0.0)  0.05 (0.3)  
              
N (Pricing) 839   839    839   839   
N (Selection) 15,367   15,367    14,835   14,835   
N (Index) 49   49    45   45   

 



Appendix Table HII. Aggregate Market-to-Book Ratios of Private Equity Investments 
 
This table reports year-end average market-to-book ratios.  Market values for each fund are calculated using the following procedure. We begin by assuming that 

the market value of the fund is equal to NAV in years one through four of the fund’s life. We then calculate the market value each quarter from years 5-9 for fund 

i using the following formula: 

𝑉௜,௧  ൌ 𝑉௜,௧ିଵሺ1 ൅ 𝑟ு,௧ሻ ൅ 𝐶௜,௧ െ 𝐷௜,௧, 

where 𝑉௜,௧ is equal to the 𝑁𝐴𝑉 of fund i at time t. 𝐶௧ and 𝐷௧ denote capital calls and distributions between times 𝑡 and 𝑡 ൅ 1, and 𝑟ு,௧ represents the return on our 

hedonic transaction-based index.  For the first quarter in year five, we use NAV as the preceding quarter’s market value.  The aggregate market-to-book ratio 

reported in this table is calculated as the sum of the individual fund’s market value within each quarter divided by the sum of the individual fund’s NAV in each 

quarter. We report the resultant market-to-book ratio for Q4 of each year, with the exception of 2018, where we report values as of Q2 due to data limitations.   
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 Vintage Year   

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 
2006 1.07 -- -- -- -- -- -- -- -- -- -- -- -- 
2007 0.83 0.93 -- -- -- -- -- -- -- -- -- -- -- 
2008 0.59 0.60 0.76 -- -- -- -- -- -- -- -- -- -- 
2009 0.98 0.82 1.02 0.78 -- -- -- -- -- -- -- -- -- 
2010 1.16 0.95 1.28 1.11 1.10 -- -- -- -- -- -- -- -- 
2011 1.35 0.95 1.32 1.31 1.06 0.98 -- -- -- -- -- -- -- 
2012 -- 1.11 1.73 1.34 1.19 1.13 1.01 -- -- -- -- -- -- 
2013 -- -- 2.59 1.71 1.49 1.39 1.22 1.04 -- -- -- -- -- 
2014 -- -- -- 2.58 1.51 1.28 1.07 0.86 0.88 -- -- -- -- 
2015 -- -- -- -- 1.44 1.30 1.02 0.70 0.79 0.95 -- -- -- 
2016 -- -- -- -- -- 1.81 1.28 0.77 1.05 1.20 0.97 -- -- 
2017 -- -- -- -- -- -- 1.60 0.70 1.14 1.30 0.96 1.14 -- 
2018 -- -- -- -- -- -- -- 0.67 1.40 1.42 0.95 1.16 0.99 

Average 1.00 0.89 1.45 1.47 1.30 1.31 1.20 0.79 1.05 1.22 0.96 1.15 0.99 
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Figure 1. Number of Transactions per Quarter 
In this Figure we plot the number of PE transactions we observe per quarter after cleaning the data as described in the paper and Appendix E.   
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Figure 2. Transactions-Based Buyout Index Over Time 
 

This figure illustrates the value of investing $1 in an index at the beginning of 2006 in each buyout index as labeled. The market index is based on 

the public market return as posted on Ken French’s website.  We build the Preqin indices based on NAVs reported in Preqin using funds that are 

four to nine years old. The transactions indices are the indices based on secondary market transactions. The Burgiss index is a NAV-based buyout 

index.  The S&P Listed Private Equity Index is an index comprised of publicly traded private equity funds. The chart uses a log scale for the vertical 

axis. 
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Figure 3. Cash Flows for the Representative Fund 

This figure illustrates the cash flows of the representative fund we use to create synthetic funds that invest in stock deciles. These cash flows are the average cash 

flows of all funds in our index based on fund-inception time. We build our index using funds with recorded cash flows in Preqin from 2006 through 2018 with 

vintages spanning from 1988 through 2016.  We scale all fund flows to a $1 commitment, align flows in fund-inception-time (as if they all made their initial capital 

call at the same moment) and calculate the average net flows across funds each quarter from fund inception to liquidation.  We use NAV as a terminal value for 

funds not-yet liquidated by the end of the sample. 

 



Table I. Summary Statistics 

This table reports summary statistics for the variables used in our Heckman model.  The first column reports statistics 

for records in our data with transactions.  The second column reports statistics for records without transactions. 𝜃௜௧ is 

the log book-to-market ratio of fund 𝑖 at time 𝑡,  log(𝑠𝑖𝑧𝑒௜௧ሻ is the log of total capital committed for fund 𝑖 at time 

𝑡,𝐴𝑔𝑒௜௧ is the age of fund 𝑖 at time 𝑡, 𝑃𝑀𝐸௜,௧ is the public market equivalent of Kaplan and Schoar (2006) for fund 𝑖 

at time 𝑡, 𝑃𝐹௜,௧ is the fraction of LPs that are pension funds for fund 𝑖 at time 𝑡, logሺ𝐵𝑀௧ሻ is the log value-weighted 

book-to-market ratio at time 𝑡 using stocks with a market cap less than $500 million and share code 10 or 11 in CRSP,  

𝐼𝐴𝑈𝑀௧ is total assets under management in PE at time 𝑡 scaled by the total number of firms that have between 20 and 

500 employees at the end of the prior year as reported by the US Census, 𝑇𝑒𝑑௧ is the TED-spread at time 𝑡 measured 

as the spread between 3-month LIBOR based on US dollars and 3-month Treasury yields,  N  per Quarter is the 

number of observations each quarter in the sample.  “Mean” “Median” and “Stdev” represent the average, median and 

standard deviation across time and across all funds (if applicable), “Q1” is the 25th percentile, and “Q3” is the 75th 

percentile.   
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Column  (1)  (2)  
  Transactions No Transaction 

qi,t (dep variable) Mean 0.19    

 Median 0.10    

 Stdev 0.42    

log(sizei,t) Mean 21.95  21.28  
 Median 21.99  21.13  
 Stdev 0.96  0.87  

Agei,t  Mean 8.61  6.39  
 Median 9.00  6.00  
 Stdev 4.05  4.15  

PMEi,t Mean 1.15  1.13  
 Median 1.10  1.06  

   Stdev 0.36  0.37  

𝑃𝐹௜௧  Mean 0.53  0.56  
 Median 0.55  0.57  
 Stdev 0.17  0.20  

log(BMt) Mean -0.22 -0.25 
Median -0.22 -0.23 

 Stdev 0.24  0.26  

IAUMt Mean 3.29  3.28  
 Median 3.53  3.53  
 Stdev 0.75  0.75  

TEDt Mean 0.48  0.47  
 Median 0.33  0.32  
 Stdev 0.49  0.46  
      

N per Quarter Mean 17.48  290.56  
 Q1 7  237  
 Q3 27  353  

Quarters  48  50  
N  839  14,528  

 
 



Table II. Sample Selection Model Estimates 
 
This table reports estimates of parameters for the Heckman (1979) sample selection model discussed in the paper.  Columns (1) and (2) report estimates and t-

statistics of parameters for the selection equation while columns (3) and (4) report estimates and t-statistics for the pricing equation.  “Heckman” refers to the 

sample selection model, while “OLS” indicates the pricing model is estimated by simple OLS with no selection equation.  Variables are described in the heading 

for Table I.  We estimate standard errors for the Heckman model using a panel bootstrap, to account for the inverse Mills ratio being a generated regressor, and 

cluster by time. We estimate White (1980) standard errors for the OLS model and cluster by time. Significance at the 1%, 5%, and 10% levels is indicated, 

respectively, by “***”, “**”, and “*”. 

Column (1) (2)  (3) (4)  (5) (6) 
 Heckman   OLS  

 Selection   Pricing   Pricing  
estimate (t-stat) estimate (t-stat)      estimate (t-stat)      

log(BMt) -0.03 -(0.1) 0.79 (3.8)*** 0.79 (5.1)*** 
TEDt 0.31 (2.0)**  -0.05 -(0.4)  -0.06 -(0.9)

IAUMt 0.20 (2.2)**  -0.20 -(2.4)**  -0.21 -(3.3)*** 

log(sizei,t) 0.40 (13.4)***  0.00 (0.0)  -0.02 -(1.9)* 
I(Age<4) -0.50 -(4.1)***  0.15 (0.8)  0.18 (2.6)*** 
I(Age>9) 0.33 (4.6)***  0.20 (1.7)*  0.18 (4.0)*** 

PMEi,t -0.13 -(2.0)**  -0.08 -(1.5)  -0.07 -(2.2)** 

PFi,t -0.32 -(2.8)***        
Inv Mills Ratio   0.06 (0.3)    
Intercept -10.66 -(14.7)***  1.05 (0.3)  1.65 (5.6)*** 

       
N (selected) 839  839  839
N (not selected) 14,528        
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Table III. Predicting Index Returns Using Lagged Market Returns 

This table reports estimates from regressions of index returns on contemporaneous and lagged market returns. The transaction index returns are generated using 

the sample selection model as described in the paper.  The S&P Listed Private Equity Index is an index comprised of publicly traded private equity funds. We build 

the Preqin indices based on NAVs reported in Preqin using funds in the transaction-based indices. The Burgiss index is a NAV-based buyout index.   

 

Column (1) (2)  (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
 Transactions S&P Listed Preqin NAV Burgiss  
 All Ages  4-9 Yrs Old    All Ages   4-9 Yrs Old    
a -0.01 -(0.79) 0.01 (1.35) -0.01 -(1.36) -0.00 -(0.88) 0.01 (2.11)** 0.01 (1.25)

b0 1.24 (4.78) *** 1.22 (5.01)*** 1.71 (7.54)*** 0.42 (5.95)*** 0.40 (7.30)*** 0.50 (7.70)*** 

b1 0.60 (4.33) *** 0.59 (4.53)*** 0.01 (0.07) 0.15 (5.48)*** 0.14 (6.12)*** 0.12 (3.62)*** 

b2 -0.27 -(1.20) -0.32 -(1.46) -0.32 -(1.56) 0.10 (3.31)*** 0.07 (3.26)*** 0.11 (2.74)*** 

b3 0.24 (1.93) * 0.22 (1.55) 0.03 (0.23) 0.12 (2.68)*** 0.09 (2.13)** 0.10 (2.17)** 

b4 -0.13 -(0.86) -0.19 -(1.39) -0.06 -(0.75) 0.04 (1.03) 0.01 (0.19) 0.01 (0.19)
                   
N 45  45  45   45  45  45  
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Table IV. Index Parameters 

This table reports index parameters for buyout indices using data from 2006-2018. Columns (1) and (2) report result for our transactions-based indices using funds 

of all ages, columns (3) and (4) report results for our transactions-based indices using funds that are 4-9 years old, columns (5) and (6) report results for the S&P 

listed index, columns (7) and (8) report results for our Preqin NAV-based indices using funds of all ages, columns (9) and (10) report results for our Preqin NAV-

based indices using funds that are 4-9 years old, and columns (11) and (12) report results for the Burgiss index. Moments of indices are Dimson adjusted using a 

number of lags based on results from Table III.  We estimate standard errors for index parameters by GMM using the approach of Newey and West (1987) to 

estimate the spectral density matrix and the delta method. Significance at the 1%, 5%, and 10% levels is indicated, respectively, by “***”, “**”, and “*”. 

Column (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

  Transactions S&P Listed Preqin NAV Burgiss  
  All Ages  4-9 Yrs Old    All Ages   4-9 Yrs Old    

E[r] 0.14 (1.6) 0.22 (2.5)**  0.09 (1.0) 0.11 (3.4)***  0.14 (4.6)***  0.12 (3.2)*** 

 1.79 (8.0)***  1.76 (8.7)***  1.74 (8.1)***  0.72 (5.7)***  0.64 (5.9)***  0.81 (5.7)*** 

 -0.02 -(0.4) 0.06 (1.1) -0.07 -(2.7)***  0.04 (1.6) 0.07 (3.3)***  0.04 (1.6)

 0.34 (2.8)***  0.31 (2.8)***  0.30 (4.2)***  0.17 (2.6)**  0.14 (2.5)***  0.20 (2.3)** 

Sharpe 0.41 (1.3) 0.68 (1.9)*  0.27 (1.3) 0.67 (2.3)**  0.99 (2.7)***  0.60 (1.9)* 

Corr w/ Mkt 0.83 (4.0)***  0.88 (3.7)***  0.90 (2.0)**  0.70 (1.7)*  0.76 (1.8)*  0.65 (1.6)

AC (unadjusted) 0.30 (0.8) 0.26 (0.7) 0.22 (0.5) 0.54 (1.4) 0.41 (0.8) 0.46 (1.3)

                   
N (Pricing) 839  839              
N (Selection) 15,367  15,367              
N (Index) 49    49    49    49    49    49   
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Table V. Campbell-Shiller Regressions 

This table reports the slope coefficient in Campbell-Shiller regressions as described in the paper, 

 
 

∑ �̅�௧ା௝
௞
௝ୀଵ ൌ 𝑎௥ ൅ 𝛽௥�̅�௧ ൅ 𝑤௥,௧ା௞   

െ∑ 𝑛ത௧ା௝
௞
௝ୀଵ ൌ 𝑎௡ ൅ 𝛽௡�̅�௧ ൅ 𝑤௡,௧ା௞        

 

         𝜀௧ା௞ ൌ 𝑎ఌ ൅ 𝛽ఌ�̅�௧ ൅ 𝑤ఌ,௧ା௞  

 

where 𝑟௜௧ା௝ represents the log return based on transaction prices, 𝑛௜௧ା௝ is the NAV-based (book-value) log return, 𝜃௜௧ 

is the log book-to-market ratio, 𝜌 is a constant of approximation, and the key component of 𝜀௧ା௞, further defined in 

the paper, is �̅�௧ା௞. Data is quarterly. Panel A reports results for 𝑘 ൌ 1 (1 quarter) while Panels B and C report results 

for overlapping regressions where 𝑘 ൌ 4 (1 year) and 𝑘 ൌ 20 (5 years).  On the left of each panel we report results 

using �̅�௧ as the sole explanatory variable.  On the right of each panel we report results that also control for �̅�௧, and 𝑛ത௧ 

as explanatory variables. We compute Hansen-Hodrick (1980) standard errors that account for the overlapping returns 

in our regressions. Significance at the 1%, 5%, and 10% levels is indicated, respectively, by “***”, “**”, and “*”. 

 Extra Control Variables: No  Extra Control Variables:   

  slope coefficient      slope coefficient    

 on ௧ഥ    st. err  R-sq  on ௧ഥ    st. err. R-sq 
Panel A. k = 1 quarter 

r 0.06 (0.12) 0.01 0.31 (0.10) 0.45 

n 0.03 (0.04) 0.03  -0.04 (0.03) 0.40 

 0.89 (0.08) ***  0.75  0.71 (0.08) 0.84 
N 49     49   

 Panel B. k = 4 quarters 

r 0.45 (0.43) 0.07  0.65 (0.44) 0.12 

n 0.01 (0.17) 0.00  -0.10 (0.16) 0.09 

 0.83 (0.26) ***  0.41  0.56 (0.25) 0.54 
 46     46   

 Panel C. k = 20 quarters 

r 1.65 (0.50) ***  0.54  1.67 (0.51) 0.58 

n -0.44 (0.29) 0.22  -0.52 (0.28) 0.31 

 0.05 (0.60) 0.00  -0.25 (0.58) 0.11 
N 30     30   

 

 

�̅�௧ ,  𝑛ത௧ 
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Table VI. Performance Metrics for Synthetic Funds 

This table reports performance metrics for a set of synthetic funds that invest capital in US equities. We sort stocks into deciles and, for each decile, create a set of 

funds that make initial capital calls at the end of June and December of each year from March 1980 through March 2009. Each fund then makes capital calls and 

distributions following the algorithm of Korteweg and Nagel (2016) to mimic the cash flows of a representative fund over a ten year period, with each fund investing 

the acquired capital into their assigned decile portfolio and the last fund making its final distribution December 2018. For each set of funds, column (2) reports the 

average size of firms within each fund in year 2020 $millions, column (3) reports the average IRR, and columns (4) and (5) reports the GPME and corresponding 

J-statistic p-value. Column (6) reports the SDF alpha for each decile portfolio, where the SDF is given by Equation (41) in the paper, column (7) reports the 

corresponding p-value of the t-statistic, column (8) reports the standard CAPM alpha for each decile portfolio, and column (9) reports the corresponding p-value 

of the t-statistic. Significance at the 1%, 5%, and 10% levels is indicated, respectively, by “***”, “**”, and “*”. 

Column (1) (2) (3) (4) (5)      (6) (7) (8) (9) 
Mean Mcap SDF CAPM 

  Decile $MM Y2020 IRR GPME p-value alpha p-value alpha p-value 

Public Equities 
1980-2018 

1 17.0 0.27 0.608 (0.00) ***  0.099 (0.26)  0.024 (0.02)** 

2 40.7 0.10 0.201 (0.05) **  -0.009 (0.92)  -0.006 (0.46)
3 81.6 0.10 0.193 (0.05) **  -0.009 (0.91)  -0.008 (0.24)
4 147.0 0.10 0.308 (0.01) **  0.041 (0.71)  -0.006 (0.34)
5 256.5 0.11 0.237 (0.02) **  0.059 (0.62)  -0.006 (0.26)
6 446.9 0.12 0.209 (0.01) ***  0.070 (0.54)  -0.003 (0.52)
7 792.9 0.12 0.142 (0.01) ***  0.071 (0.54)  -0.003 (0.38)
8 1,511.3 0.13 0.113 (0.00) ***  0.077 (0.49)  -0.001 (0.83)
9 3,712.8 0.13 0.066 (0.00) ***  0.062 (0.55)  0.000 (0.86)

10 86,970.4 0.12 -0.040 (0.04) **  0.063 (0.55)  0.001 (0.42)
 

        
 

 Average of       
 

 538 Firms 59 Funds         59 Funds 157 Obs  157 Obs  
  N per Decile per Decile         per Decile per Decile   per Decile   
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