The Demographics of Innovation and Asset Returns

Nicolae Garleanu¹ Leonid Kogan² Stavros Panageas³

¹UC Berkeley, NBER and CEPR
²MIT and NBER
³LBS, Chicago Booth and NBER

October 2009
<table>
<thead>
<tr>
<th></th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>The Model</td>
</tr>
<tr>
<td>3</td>
<td>Empirical Results</td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Contribution

- New description of aggregate fundamental risk
Contribution

- New description of aggregate fundamental risk
- Systematic risk factor created by innovation: displacement risk
Contribution

- New description of aggregate fundamental risk
- Systematic risk factor created by innovation: displacement risk
- Empirical evidence for displacement risk
Contribution

- New description of aggregate fundamental risk
- Systematic risk factor created by innovation: *displacement risk*
- Empirical evidence for displacement risk
- Value-growth factor and the value premium, equity premium
Contribution

- New description of aggregate fundamental risk
- Systematic risk factor created by innovation: displacement risk
- Empirical evidence for displacement risk
- Value-growth factor and the value premium, equity premium
- Long-horizon asset allocation and risk faced by retail investors
Motivation

- Innovation generates systematic risks
Motivation

- Innovation generates systematic risks
- Existing firms may lose market share to competition

Risk to financial capital
Motivation

- Innovation generates systematic risks
- Existing firms may lose market share to competition

 Risk to financial capital
- Human capital of the current generation of workers is less compatible with new technologies than human capital of new generations

 Risk to human capital
Motivation

- Innovation generates systematic risks
- Existing firms may lose market share to competition

 Risk to financial capital

- Human capital of the current generation of workers is less compatible with new technologies than human capital of new generations

 Risk to human capital

- Displacement Risk
Motivation

- Benefits of future technological innovation will be partly captured by the innovators creating new firms and new generations of workers with superior human capital.
Motivation

- Benefits of future technological innovation will be partly captured by the innovators creating new firms and new generations of workers with superior human capital.
- Risk sharing is not perfect: no trading with future generations.
Motivation

- Benefits of future technological innovation will be partly captured by the innovators creating new firms and new generations of workers with superior human capital.
- Risk sharing is not perfect: no trading with future generations.
- Older cohorts of agents cannot hedge displacement risk.
Motivation

- Benefits of future technological innovation will be partly captured by the innovators creating new firms and new generations of workers with superior human capital
- Risk sharing is not perfect: no trading with future generations
- Older cohorts of agents cannot hedge displacement risk
- Displacement risk is a priced risk factor
Key Implications

- Standard Consumption-CAPM is misspecified: omits displacement risk
Consumption Risk

SDF = marginal rate of substitution for the same agent
Consumption Risk

SDF = marginal rate of substitution for the same agent
Consumption Risk

SDF = marginal rate of substitution for the same agent

Future per-capita aggregate consumption is not the same as the future per-capita consumption of the current population of agents.

\[\text{log consumption} \]

Future per-capita aggregate consumption is not the same as the future per-capita consumption of the current population of agents.
Consumption Risk

SDF = marginal rate of substitution for the same agent

Future per-capita aggregate consumption is not the same as the future per-capita consumption of the current population of agents

$$\frac{\xi_{t+1}}{\xi_t} = \beta \left(\frac{Y_{t+1}}{Y_t} \right)^{-\gamma} \times \frac{1}{1 - \lambda} \left(1 - \lambda \frac{C_{t+1,t+1}}{Y_{t+1}} \right)^{-\gamma}$$

Standard Term Displacement correction
Key Implications

- Standard Consumption-CAPM is misspecified: omits displacement risk
- Value-growth factor captures exposure to displacement risk
Key Implications

- Standard Consumption-CAPM is misspecified: omits displacement risk
- Value-growth factor captures exposure to displacement risk
- Value premium due to hedging demand for growth stocks
Hedging Demand and the Value Premium

Some firms more innovative than others, higher valuation ratios: growth firms
Hedging Demand and the Value Premium

- Some firms more innovative than others, higher valuation ratios: growth firms
- Growth and value firms have unequal exposure to innovation shocks ⇒ growth-value factor
Hedging Demand and the Value Premium

- Some firms more innovative than others, higher valuation ratios: growth firms
- Growth and value firms have unequal exposure to innovation shocks ⇒ growth-value factor
- Growth-value factor tracks displacement shocks ⇒ priced risk factor
Hedging Demand and the Value Premium

- Some firms more innovative than others, higher valuation ratios: growth firms
- Growth and value firms have unequal exposure to innovation shocks ⇒ growth-value factor
- Growth-value factor tracks displacement shocks ⇒ priced risk factor
- Growth firms provide a valuable hedge against displacement risk ⇒ positive value premium
Key Implications

- Standard Consumption-CAPM is misspecified: omits displacement risk
- Value-growth factor captures exposure to displacement risk
- Value premium due to hedging demand for growth stocks
- Long-horizon investing: indexing ≠ keeping up
Long-Horizon Investing

- An average investor cannot beat the market
Long-Horizon Investing

- An average investor cannot beat the market
- Popular advice: index, stay average
Long-Horizon Investing

- An average investor cannot beat the market
- Popular advice: index, stay average
- Holding the market does not protect against displacement risk
Long-Horizon Investing

- An average investor cannot beat the market
- Popular advice: index, stay average
- Holding the market does not protect against displacement risk
- A typical investor will fall behind the “market” on average!
Long-Horizon Investing

- An average investor cannot beat the market
- Popular advice: index, stay average
- Holding the market does not protect against displacement risk
- A typical investor will fall behind the “market” on average!
- A growth tilt in the portfolio could help mitigate displacement risk, but it is costly
Outline

1. Introduction
2. The Model
3. Empirical Results
4. Conclusion
Agents

- Arrive and die randomly each period
Agents

- Arrive and die randomly each period
- Supply labor to firms, trade in financial markets
Agents

- Arrive and die randomly each period
- Supply labor to firms, trade in financial markets
- Behave rationally and competitively
Technology

- Representative competitive firm produces the final consumption good using labor and intermediate goods
Technology

- Representative competitive firm produces the final consumption good using labor and intermediate goods
- Many intermediate goods produced by monopolistically competitive firms
Technology

- Representative competitive firm produces the final consumption good using labor and intermediate goods
- Many intermediate goods produced by monopolistically competitive firms
- Innovation = Increased variety of intermediate goods
Representative competitive firm produces the final consumption good using labor and intermediate goods.

Many intermediate goods produced by monopolistically competitive firms.

Innovation = Increased variety of intermediate goods.

Innovation \Rightarrow Higher output and more competition between intermediate-good producers.
Innovation

Inventions, firms, and inventors

- Inventions are patents for production of new intermediate goods
Innovation
Inventions, firms, and inventors

- Inventions are patents for production of new intermediate goods
- Intellectual property of inventions belongs to inventors (new firms) and old firms
Innovation

Inventions, firms, and inventors

- Inventions are patents for production of new intermediate goods
- Intellectual property of inventions belongs to inventors (new firms) and old firms
- New firms can be of “value” and “growth” type
Innovation

Inventions, firms, and inventors

- Inventions are patents for production of new intermediate goods
- Intellectual property of inventions belongs to inventors (new firms) and old firms
- New firms can be of “value” and “growth” type
- Value firms produce and do not invent, responsible for a fraction of production of new goods
Innovation

Inventions, firms, and inventors

- Inventions are patents for production of new intermediate goods
- Intellectual property of inventions belongs to inventors (new firms) and old firms
- New firms can be of “value” and “growth” type
- **Value** firms produce and do not invent, responsible for a fraction of production of new goods
- **Growth** firms produce and invent, responsible for the rest of production and a fraction of invention
Innovation

Inventions, firms, and inventors

- Inventions are patents for production of new intermediate goods
- Intellectual property of inventions belongs to inventors (new firms) and old firms
- New firms can be of “value” and “growth” type
 - **Value** firms **produce** and do not invent, responsible for a fraction of production of new goods
 - **Growth** firms produce and **invent**, responsible for the rest of production and a fraction of invention
- Old generations capture a fraction of inventions through ownership of growth firms
A fraction of new generation are workers
Innovation

Workers

- A fraction of new generation are workers
- Workers are born with endowment of hours
Innovation

Workers

- A fraction of new generation are workers
- Workers are born with endowment of hours
- Assumption: older workers do not keep up with innovative technologies as well as the younger workers
Asset Markets

- Complete set of state-contingent claims
Asset Markets

- Complete set of state-contingent claims
- Assets are priced by the standard DCF formula
Equilibrium

- Consumers (workers and inventors) chose their consumption optimally subject to their budget constraints
Equilibrium

- Consumers (workers and inventors) chose their consumption optimally subject to their budget constraints.
- Firms maximize their profits.
Equilibrium

- Consumers (workers and inventors) chose their consumption optimally subject to their budget constraints.
- Firms maximize their profits.
- Markets for labor and goods clear.
Summary

- Innovation = Increased variety of intermediate goods
Summary

- Innovation = Increased variety of intermediate goods
- Agents
Summary

- Innovation = Increased variety of intermediate goods
- Agents
 - Inventors (own patents/firms)
Summary

- **Innovation** = Increased variety of intermediate goods
- **Agents**
 - Inventors (own patents/firms)
 - Workers (sell labor)
Summary

- **Innovation** = Increased variety of intermediate goods
- **Agents**
 - Inventors (own patents/firms)
 - Workers (sell labor)
- **Firms**
Summary

- Innovation = Increased variety of intermediate goods
- Agents
 - Inventors (own patents/firms)
 - Workers (sell labor)
- Firms
 - Value (production, no innovation)
Summary

- Innovation = Increased variety of intermediate goods
- Agents
 - Inventors (own patents/firms)
 - Workers (sell labor)
- Firms
 - Value (production, no innovation)
 - Growth (some innovation)
The Displacement Factor

- Theory: can estimate the displacement factor as a change in relative consumption of a group of households:

\[\log \left(\frac{C_{t+1,s}^i}{C_{t+1}} \right) - \log \left(\frac{C_{t,s}^i}{C_t} \right) \]
The Displacement Factor

Theory: can estimate the displacement factor as a change in relative consumption of a group of households:

$$\log \left(\frac{c_{t+1,s}^i}{C_{t+1}} \right) - \log \left(\frac{c_{t,s}^i}{C_t} \right)$$

Use household-level consumption data (CEX, 1984-2003)
The Displacement Factor

Theory: can estimate the displacement factor as a change in relative consumption of a group of households:

$$\log \left(\frac{C_{t+1,s}^i}{C_{t+1}} \right) - \log \left(\frac{C_t^i}{C_t} \right)$$

Use household-level consumption data (CEX, 1984-2003)

Group all cohorts of households that entered the economy before date s
The Displacement Factor

![Graph showing the displacement factor over different cohorts and years](image-url)

Cohorts pre-1975
Cohorts pre-1980
Cohorts pre-1970
Cohorts pre-1965

Garleanu, Kogan, Panageas (2009)
Introduction

The Model

Empirical Results

Conclusion

Garleanu, Kogan, Panageas (2009)
Consumption Cohort Effects

- Time-series dimension of CEX is limited
Consumption Cohort Effects

- Time-series dimension of CEX is limited
- Use theory to exploit the cross-section of consumption
Consumption Cohort Effects

- Time-series dimension of CEX is limited
- Use theory to exploit the cross-section of consumption
- Our model implies existence of consumption cohort effects

\[\log c_{t,s} = a_s + b_t \]

- \(t \) - calendar time
- \(s \) - cohort
Consumption Cohort Effects

- Time-series dimension of CEX is limited
- Use theory to exploit the cross-section of consumption
- Our model implies existence of consumption cohort effects

\[\log c_{t,s} = a_s + b_t \]

- \(t \) - calendar time
- \(s \) - cohort

- Displacement shocks are the permanent component of consumption cohort effects \(a_s \)
Consumption Cohorts

- Detrended cohorts (left axis)
- Detrended cumulative HML return (right axis)

Garleanu, Kogan, Panageas (2009)
Value Premium

Garleanu, Kogan, Panageas (2009)
Innovation Betas and Book-to-Market

Long-short B/M portfolios: Decile i — Decile 10: 1927-1995

Garleanu, Kogan, Panageas (2009)
Alternative Measures of Innovation

- We extract innovation shocks from consumption cohort effects
Alternative Measures of Innovation

- We extract innovation shocks from consumption cohort effects
- Can one identify other, more direct proxies for innovation?
Alternative Measures of Innovation

- We extract innovation shocks from consumption cohort effects
- Can one identify other, more direct proxies for innovation?
- Motivated by the model: changes in the stock of trademarks
Alternative Measures of Innovation

- We extract innovation shocks from consumption cohort effects
- Can one identify other, more direct proxies for innovation?
- Motivated by the model: changes in the stock of trademarks
- Relate average returns on the book-to-market decile portfolios to innovation betas
Innovation Betas and Book-to-Market

Outline

1. Introduction
2. The Model
3. Empirical Results
4. Conclusion
Conclusion

- Displacement risk is a fundamental risk factor
Conclusion

- Displacement risk is a fundamental risk factor
- Empirical evidence for displacement risk
Conclusion

- Displacement risk is a fundamental risk factor
- Empirical evidence for displacement risk
- Calibration (not shown) is quantitatively realistic
Displacement risk is a fundamental risk factor
Empirical evidence for displacement risk
Calibration (not shown) is quantitatively realistic
Better understanding of the value-growth factor, value premium, equity premium