Optimal Asset Allocation and Risk Shifting in Money Management

Suleyman Basak (LBS), Anna Pavlova (LBS), and Alex Shapiro (Azimuth Trust)

(1) Motivation and Objective
(2) Model
(3) Empirical Analysis
(4) Costs of Active Management to Investors
1. Motivation and Objective

- Mutual fund managers’ compensation is linked to the value of assets under management
- Implicit incentives due to fund flows to performance relationship
- The flow-performance relationship is
 - positive
 - exhibits convexities
- **Question:** How does a fund manager respond to these incentives?
1. Motivation and Objective

Fund Flow - Performance Relationship (Chevalier and Ellison (1997))

Fig. 1.—Flow-performance relationship \(\hat{f} \) for young funds (age 2) with 90 percent confidence bands.
Summary of Main Testable Implications

- Taking risk \(\neq \) increasing volatility of portfolio

- Gambling entails either an increase or a decrease in portfolio volatility
 - a sufficiently risk averse manager decreases volatility
 - manager manipulates systematic risk rather than idiosyncratic
 - gambling intensifies towards year-end

- Incentives to gamble are state-dependent. For example, the manager’s risk-taking incentives are

\[
\text{year-end flow}
\]

\[
\begin{align*}
&f_H \\
&f_L \\
&0
\end{align*}
\]

\[\text{relative return}\]

- Highest
- Lowest
1. Motivation and Objective

Related Literature

- **Risk-taking of fund managers in response to fund flows:**
 Chevalier and Ellison (1997)

- **Managerial incentives and portfolio choice:**

- **Empirical literature on risk-taking by mutual fund managers:**
2. Model

- Finite horizon, \([0, T]\), Black-Scholes economy

- Assets:
 - Money market account with rate \(r\)
 - Stock follows \(dS_t = \mu S_t dt + \sigma S_t dw_t\)

- Fund manager:
 - evaluated relative to the index \(Y_t\) (fraction \(\beta\) in stock)
 - receives flows at \(T\) at rate \(f_T\)
 - chooses a trading strategy \(\theta\) and terminal portfolio value \(W_T\)

\[
\max_{\theta, W_T} E[u(W_T f_T)] = E \left(\frac{(W_T f_T)^{1-\gamma}}{1-\gamma} \right)
\]

subject to

\[
dW_t = [r + \theta_t(\mu - r)] W_t dt + \theta_t \sigma W_t dw_t
\]
How does one measure risk-taking incentives?

- Conventional view:
 - sensitivity of the payoff’s value to volatility (vega): \(\frac{\partial V(\sigma_t^W; R_t^W - R_t^Y)}{\partial \sigma_t^W} \)

- This paper:
 - optimal volatility \(\hat{\sigma}_t^W = \hat{\theta}_t \sigma \). That is, \(\frac{\partial V(\sigma_t^W; R_t^W - R_t^Y)}{\partial \sigma_t^W} = 0 \Rightarrow \hat{\sigma}_t^W. \)
Manager’s Optimal Risk Exposure

(a) Economies with $\theta^N > \theta^Y$

(b) Economies with $\theta^N < \theta^Y$

θ^N: risk exposure in Merton’s problem, θ^Y: risk exposure of the index
An Alternative Flow-Performance Relationship (Collar-Type)

\[f_T \]
\[f_H \]
\[f_L \]

Can also be reinterpreted as an 80/120 annual bonus plan.
Manager’s Optimal Risk Exposure (Collar-Type)

(a) Economies with $\theta^N > \theta^Y$

(b) Economies with $\theta^N < \theta^Y$

θ^N: risk exposure in Merton’s problem, θ^Y: risk exposure of the index
Further Alternative Flow-Performance Specifications

- Linear-convex (Sirri and Tufano (1998))

\[f_L \]
\[0 \]
\[\text{relative return} \]

- Linear-linear (asymmetric fee structure)

\[f_L \]
\[0 \]
\[\text{relative return} \]
Manager’s Optimal Risk Exposure: Dynamics

(a) Economies with $\theta^N > \theta^Y$

(b) Economies with $\theta^N < \theta^Y$

- Manager engages in risk shifting well before the year-end
- Risk shifting more pronounced as the year-end approaches
2. Model

Multiple Stocks

(a) Economies with $\theta_1^N > \theta_1^Y$ and $\theta_2^N > \theta_2^Y$

(b) Economies with $\theta_1^N < \theta_1^Y$ and $\theta_2^N > \theta_2^Y$
2. Model

Idiosyncratic versus Systematic Risk

Economic setup:

\[dS_{1t} = \mu_1 S_{1t}dt + \sigma_{11} S_{1t}dw_{1t} + \sigma_{12} S_{1t}dw_{2t} \]

\[dS_{2t} = \mu_2 S_{2t}dt + \sigma_{21} S_{2t}dw_{1t} + \sigma_{22} S_{2t}dw_{2t} \]

\[\mu = \begin{pmatrix} \mu_1 \\ r \end{pmatrix}, \quad \sigma = \begin{pmatrix} \sigma_{11} & 0 \\ 0 & \sigma_{22} \end{pmatrix}, \quad Y = S_1 \]
3. Empirical Analysis

Existing Work

- *Brown, Harlow, and Starks (1996)*
 - find that underperforming managers increase volatility towards the year-end

- *Busse (2001)*
 - shows that the above test fails on daily data

- *Chevalier and Ellison (1997)*
 - look at $\sigma(R^W - R^Y)$ towards the year-end; find an increase
 - use monthly data

- *Reed and Wu (2005)*
 - test the results of this paper on daily data
 - distinguish between tournaments- vs. benchmarking-induced incentives
Data

- Daily mutual fund returns from Will Goetzmann and Geert Rouwenhorst (International Center for Finance at Yale SOM).

- Merged with CRSP to find out mutual funds objective codes
 - left only actively managed US equity mutual funds in the aggressive growth, growth and income, and long-term growth categories.

- Used the S&P 500 index as the benchmark.
Tracking error and standard deviation tests

Hypothesis 1: Tracking error variance is higher for underperforming managers.

<table>
<thead>
<tr>
<th>LHS: $\sigma_m(R_{i,t}^W - R_t^Y)$</th>
<th>LHS: $\sigma_m(R_{i,t}^W)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Estimate</td>
<td>t-Statistic</td>
</tr>
<tr>
<td>OVER$_{i,m} \times 10^3$</td>
<td>-0.1819</td>
</tr>
<tr>
<td>Fund-year FE</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.39</td>
</tr>
<tr>
<td>N</td>
<td>40721</td>
</tr>
</tbody>
</table>

$\sigma_m(R_{i,t}^W - R_t^Y)$ – standard deviation of tracking error for month m; Y is S&P 500

$\sigma_m(R_{i,t}^W)$ – standard deviation of fund returns for month m

OVER$_{i,m}$ – relative performance indicator prior to month m
Hypothesis 2: Sufficiently risk-averse managers decrease their portfolio betas when underperforming the market.

\[R_{i,t}^{W} - R_{t}^{F} = a + (b_{Fund-Year}1_{FY} + b_{Month}1_{M} + b_{UNDER_{i,w}})(R_{t}^{Y} - R_{t}^{F}) + \varepsilon_{i,t} \]

<table>
<thead>
<tr>
<th></th>
<th>Beta(_{T}) below 1</th>
<th>Beta(_{T-1}) below 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>UNDER({i,w}) \times (R{t}^{Y} - R_{t}^{F})</td>
<td>-0.017 (-6.61)</td>
<td>-0.020 (-7.72)</td>
</tr>
<tr>
<td>Month fixed effects</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Fund-year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Number of observations</td>
<td>808642</td>
<td></td>
</tr>
</tbody>
</table>
Robustness

- Tried several alternative definitions of the OVER/UNDER indicator
- Included lagged dependent variables to deal with autocorrelation
- Clustered errors by month/day and fund objective code
4. Costs of Active Management to Investors

- Define a measure of gain/loss, $\hat{\lambda}$, in units of investor's initial wealth:

$$V^I((1 + \hat{\lambda})W_0) = \hat{V}(W_0)$$

 - $V^I(\cdot)$ is investor's indirect utility under θ^I
 - $\hat{V}(\cdot)$ is investor's indirect utility under delegation

- Decompose $\hat{\lambda}$ into two components: $1 + \hat{\lambda} = (1 + \lambda^N)(1 + \lambda^Y)$
 - λ^N: gain/loss due to explicit incentives, solves
 $$V^I((1 + \lambda^N)W_0) = \hat{V}(W_0; f_T=1)$$
 - λ^Y: gain/loss due to implicit incentives
Costs of Active Management in Economies (a) \((\theta^N > \theta^Y)\)

Fixed parameter values: \(\gamma = 1, \gamma_I = 2, f_L = 0.8, f_H = 1.5, f_L + f_H = 2.3, \beta = 1, \eta_L = -0.08, \eta_H = 0.08, \eta_L + \eta_H = 0, \mu = 0.06, r = 0.02, \sigma = 0.29, W_0 = 1, T = 1.\)

<table>
<thead>
<tr>
<th>Effects of</th>
<th>Cost-benefit measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>(\lambda^Y, \lambda^N)</td>
</tr>
<tr>
<td>Managerial risk aversion</td>
<td>(\lambda) (%)</td>
</tr>
<tr>
<td>0.5</td>
<td>-8.13, -4.19</td>
</tr>
<tr>
<td>1.0</td>
<td>-5.12, -0.47</td>
</tr>
<tr>
<td>2.0</td>
<td>-3.31, 0.00</td>
</tr>
<tr>
<td>3.0</td>
<td>-2.56, -0.05</td>
</tr>
<tr>
<td>4.0</td>
<td>-2.15, -0.11</td>
</tr>
<tr>
<td>Implicit reward for outperformance</td>
<td></td>
</tr>
<tr>
<td>(f_H - f_L)</td>
<td>0.3</td>
</tr>
<tr>
<td>0.5</td>
<td>-4.29, -0.47</td>
</tr>
<tr>
<td>0.7</td>
<td>-5.12, -0.47</td>
</tr>
<tr>
<td>0.9</td>
<td>-6.01, -0.47</td>
</tr>
<tr>
<td>1.1</td>
<td>-6.88, -0.47</td>
</tr>
<tr>
<td>Risk exposure of the benchmark</td>
<td></td>
</tr>
<tr>
<td>(\theta^Y)</td>
<td>0.50</td>
</tr>
<tr>
<td>0.75</td>
<td>-4.63, -0.47</td>
</tr>
<tr>
<td>1.00</td>
<td>-5.12, -0.47</td>
</tr>
<tr>
<td>1.25</td>
<td>-6.69, -0.47</td>
</tr>
<tr>
<td>1.50</td>
<td>-8.45, -0.47</td>
</tr>
<tr>
<td>Flow threshold differential</td>
<td></td>
</tr>
<tr>
<td>(\eta_H - \eta_L)</td>
<td>0.08</td>
</tr>
<tr>
<td>0.12</td>
<td>-4.70, -0.47</td>
</tr>
<tr>
<td>0.16</td>
<td>-5.12, -0.47</td>
</tr>
<tr>
<td>0.20</td>
<td>-5.67, -0.47</td>
</tr>
<tr>
<td>0.24</td>
<td>-6.21, -0.47</td>
</tr>
</tbody>
</table>

-4.78, -5.15, -5.61, -6.12, -6.65
Fixed parameter values: $\gamma = 1, \gamma_I = 2, f_L = 0.8, f_H = 1.5, f_L + f_H = 2.3, \beta = 1, \eta_L = -0.08, \eta_H = 0.08, \eta_L + \eta_H = 0, \mu = 0.06, r = 0.02, \sigma = 0.29, W_0 = 1, T = 1.$

Costs of Active Management in Economies (b) ($\theta^N < \theta^Y$)

<table>
<thead>
<tr>
<th>Effects of</th>
<th></th>
<th>Cost-benefit measures $\lambda^Y, \lambda^N, \hat{\lambda}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managerial risk aversion</td>
<td>γ</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.13, -4.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-11.98</td>
</tr>
<tr>
<td>Implicit reward for outperformance</td>
<td>$f_H - f_L$</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3.33, -0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3.79</td>
</tr>
<tr>
<td>Risk exposure of the benchmark</td>
<td>θ^Y</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5.43, -0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5.88</td>
</tr>
<tr>
<td>Flow threshold differential</td>
<td>$\eta_H - \eta_L$</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.33, -0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.78</td>
</tr>
</tbody>
</table>
5. Conclusion

• Characterized the manager’s optimal behavior in response to incentives induced by the fund flow-performance relationship.

• Identified circumstances in which the manager would like to gamble.

• Gambling may be associated with a decrease in the fund’s volatility.

• Adverse incentives of the manager result in an economically significant cost to the investor.