A Neoclassical Interpretation of Momentum

Laura Xiaolei Liu1 \hspace{1cm} Lu Zhang2

1Hong Kong University of Science and Technology

2The Ohio State University and NBER

The Q Group
April 9, 2014
An economic interpretation of momentum based on the neoclassical q-theory of investment

Practical implication: Momentum might be riskier than you thought
Key Result
Price and earnings momentum

- Average realized returns vs. Average predicted returns
- The points (2, 3), (4, 5), (6, 7), (8, 9) are plotted on the graph.
- The linear relationship suggests a strong positive correlation between realized and predicted returns.
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
The Q Model
A microfoundation for the WACC approach to capital budgeting

Marginal benefits of investment at time $t+1$

$$r_{it+1} = \left[(1 - \tau_{t+1}) \left\{ (1 - \delta_{it+1}) \left[1 + (1 - \tau_{t+1})a\left(\frac{l_{it+1}}{K_{it+1}} \right) \right] \right\} + \tau_{t+1}\delta_{it+1} + \frac{a}{2} \left(\frac{l_{it+1}}{K_{it+1}} \right)^2 \right]$$

Marginal product plus economy of scale (net of taxes)

Expected continuation value

Marginal costs of investment at time t

The weighted average cost of capital

$$w_{it}r_{it+1}^{Ba} + (1 - w_{it})r_{it+1}^{S} = r_{it+1}^{I}$$
The Q Model

Expected stock returns = expected levered investment returns?

\[
E \left[r_{it+1}^S - \frac{r_{it+1}^l(a, \kappa) - w_{it}r_{it+1}^{Ba}}{1 - w_{it}} \right] = 0,
\]

with the model error, \(\alpha_i^q \), as the sample average of the difference

Construct a \(\chi^2 \) test per Hansen (1982) based on these alphas
The Q Model
Measurement, 1963–2012

- K_{it}: Net property, plant, and equipment (PPE)
- l_{it}: Capital expenditure minus sales of PPE
- Y_{it}: Sales
- B_{it}: Long-term debt plus short-term debt
- P_{it}: The market value of common equity
- δ_{it}: The amount of depreciation divided by capital
- r_{it+1}^B: Imputed bond ratings, assigning corporate bond returns of a given rating to all firms with the same rating
- τ_t: Statutory tax rate of corporate income
The Q Model

Timing alignment, firms with December fiscal yearend

\[r_{it+1} \]

(from July of year \(t \) to June of \(t + 1 \))

\[\tau_t, I_{it} \]

(from January of year \(t \) to December of \(t \))

\[\tau_{t+1}, \delta_{it+1}, Y_{it+1}, I_{it+1} \]

(from January of year \(t + 1 \) to December of \(t + 1 \))

The holding period, February–July of year \(t \), for the first sub-portfolio of a momentum portfolio in July of year \(t \)

The holding period, July–December of year \(t \), for the sixth sub-portfolio of a momentum portfolio in July of year \(t \)
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
Average Momentum Profits

Point estimates

<table>
<thead>
<tr>
<th></th>
<th>Price momentum</th>
<th>Earnings momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.52</td>
<td>5.41</td>
</tr>
<tr>
<td>[se]</td>
<td>[0.94]</td>
<td>[2.51]</td>
</tr>
<tr>
<td>κ</td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>[se]</td>
<td>[0.02]</td>
<td>[0.03]</td>
</tr>
</tbody>
</table>
Average Momentum Profits
Deciles, alphas and overall model performance

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>5</th>
<th>W</th>
<th>W−L</th>
<th>mae</th>
<th>[p-val]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{r}^S</td>
<td>4.04</td>
<td>12.36</td>
<td>19.13</td>
<td>15.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^q</td>
<td>−1.61</td>
<td>1.32</td>
<td>−1.21</td>
<td>0.40</td>
<td>0.83</td>
<td>[0.04]</td>
</tr>
<tr>
<td>[t]</td>
<td>−0.39</td>
<td>0.44</td>
<td>−0.29</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{r}^S</td>
<td>10.48</td>
<td>15.48</td>
<td>18.95</td>
<td>8.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^q</td>
<td>−0.39</td>
<td>1.05</td>
<td>−1.31</td>
<td>−0.92</td>
<td>0.63</td>
<td>[0.09]</td>
</tr>
<tr>
<td>[t]</td>
<td>−0.09</td>
<td>0.25</td>
<td>−0.37</td>
<td>−0.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Average Momentum Profits
Comparative statics

The investment return, r_{it+1}^I

$$
(1 - \tau_{t+1}) \left[\kappa \frac{Y_{it+1}}{K_{it+1}} + \frac{a}{2} \left(\frac{I_{it+1}}{K_{it+1}} \right)^2 \right] + \tau_{t+1} \delta_{it+1} + (1 - \delta_{it+1}) \left[1 + (1 - \tau_{t+1})a \left(\frac{I_{it+1}}{K_{it+1}} \right) \right] - w_{it} r_{it+1}^B
$$

The levered investment return, r_{it+1}^{lw}

$$
1 + (1 - \tau_{t})a \left(\frac{I_{it}}{K_{it}} \right)
$$

$$
1 - w_{it}
$$

Components of expected stock returns:
I_{it}/K_{it}, Y_{it+1}/K_{it+1}, $(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$, and w_{it}
Average Momentum Profits

Expected return components

<table>
<thead>
<tr>
<th>Loser</th>
<th>5</th>
<th>Winner</th>
<th>W−L</th>
<th>[t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{it}/K_{it}</td>
<td>0.22</td>
<td>0.19</td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>$(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$</td>
<td>0.83</td>
<td>0.99</td>
<td>1.15</td>
<td>0.32</td>
</tr>
<tr>
<td>Y_{it+1}/K_{it+1}</td>
<td>3.16</td>
<td>3.00</td>
<td>4.10</td>
<td>0.94</td>
</tr>
<tr>
<td>w_{it}</td>
<td>0.34</td>
<td>0.25</td>
<td>0.22</td>
<td>−0.12</td>
</tr>
<tr>
<td>Earnings momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{it}/K_{it}</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>$(I_{it+1}/K_{it+1})/(I_{it}/K_{it})$</td>
<td>0.95</td>
<td>1.00</td>
<td>1.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Y_{it+1}/K_{it+1}</td>
<td>3.01</td>
<td>3.06</td>
<td>3.53</td>
<td>0.52</td>
</tr>
<tr>
<td>w_{it}</td>
<td>0.29</td>
<td>0.28</td>
<td>0.20</td>
<td>−0.09</td>
</tr>
</tbody>
</table>
Average Momentum Profits

Comparative statics

<table>
<thead>
<tr>
<th></th>
<th>Loser</th>
<th>5</th>
<th>Winner</th>
<th>W−L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{it}/K_{it}</td>
<td>−2.58</td>
<td>3.77</td>
<td>−7.23</td>
<td>−4.65</td>
</tr>
<tr>
<td>q_{it+1}/q_{it}</td>
<td>−7.26</td>
<td>1.00</td>
<td>2.66</td>
<td>9.92</td>
</tr>
<tr>
<td>Y_{it+1}/K_{it+1}</td>
<td>−2.59</td>
<td>−0.56</td>
<td>4.13</td>
<td>6.73</td>
</tr>
<tr>
<td>\overline{w}_{it}</td>
<td>−1.39</td>
<td>1.22</td>
<td>−1.48</td>
<td>−0.09</td>
</tr>
<tr>
<td>Earnings momentum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{it}/K_{it}</td>
<td>0.62</td>
<td>2.89</td>
<td>−4.54</td>
<td>−5.16</td>
</tr>
<tr>
<td>q_{it+1}/q_{it}</td>
<td>−3.20</td>
<td>0.88</td>
<td>0.88</td>
<td>4.07</td>
</tr>
<tr>
<td>Y_{it+1}/K_{it+1}</td>
<td>−1.65</td>
<td>0.24</td>
<td>1.71</td>
<td>3.36</td>
</tr>
<tr>
<td>\overline{w}_{it}</td>
<td>−0.57</td>
<td>1.20</td>
<td>−2.52</td>
<td>−1.95</td>
</tr>
</tbody>
</table>
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
Reversal

Price momentum, r_{it+1} and r_{it+1}^{lw}
Reversal

Price momentum, \(\frac{I_{it+1}/K_{it+1}}{I_{it}/K_{it}} \) and \(\frac{Y_{it+1}}{K_{it+1}} \)
Reversal

Earnings momentum, r_{it+1}^S and r_{it+1}^{lw}
Reversal

Earnings momentum, $(l_{it+1}/k_{it+1})/(l_{it}/k_{it})$ and y_{it+1}/k_{it+1}
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
Bansal, Dittmar, and Lundblad (2005) show that aggregate consumption risks in cash flows help explain momentum profits:

$$g_{i,t} = \gamma_i \left(\frac{1}{8} \sum_{k=1}^{8} g_{c,t-k} \right) + u_{i,t}$$

- $g_{i,t}$: demeaned log real dividend growth of momentum decile i
- $g_{c,t}$: demeaned log real growth rate of aggregate consumption
- γ_i: cash flow exposure to long-run consumption growth
Define the cash flow in the investment return as:

\[
D_{it+1}^* = (1 - \tau_{t+1}) \left[\kappa \frac{Y_{it+1}}{K_{it+1}} + \frac{a}{2} \left(\frac{l_{it+1}}{K_{it+1}} \right)^2 \right] + \tau_{t+1} \delta_{it+1}
\]

Let \(g_{i,t}^* \): demeaned log real growth of \(D_{it+1}^* \) for momentum decile \(i \):

\[
g_{i,t}^* = \gamma_{i}^* \left(\frac{1}{8} \sum_{k=1}^{8} g_{c,t-k} \right) + u_{i,t}
\]

- \(\gamma_{i}^* \): cash flow exposure to long-run consumption growth
Long-run Risks

Evidence

<table>
<thead>
<tr>
<th></th>
<th>Price momentum</th>
<th>Earnings momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ_i [se] γ_i^* [se]</td>
<td>γ_i [se] γ_i^* [se]</td>
</tr>
<tr>
<td>5</td>
<td>0.18 [1.27] 5.52 [1.20]</td>
<td>1.21 [2.20] 5.82 [1.49]</td>
</tr>
</tbody>
</table>
1 The Q Model
2 Average Momentum Profits
3 Momentum Reversal
4 Long-run Risks in Momentum
5 Market States and Momentum
6 The Interaction of Momentum with Firm Characteristics
7 Risk Analysis
Market States and Momentum

Cooper, Gutierrez, and Hameed (2004), UP (DOWN) defined as the market returns nonnegative (negative) over the prior year

<table>
<thead>
<tr>
<th>State</th>
<th>Price momentum</th>
<th>Earnings momentum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profits $[t]$</td>
<td>Profits $[t]$</td>
</tr>
<tr>
<td>DOWN</td>
<td>2.21 [0.62] r^S</td>
<td>1.31 [0.40] r^S</td>
</tr>
<tr>
<td>UP</td>
<td>9.89 [5.04] r^S</td>
<td>5.04 [6.73] r^S</td>
</tr>
<tr>
<td>DOWN</td>
<td>9.19 [4.50] r^{lw}</td>
<td>4.50 [2.46] r^{lw}</td>
</tr>
<tr>
<td>UP</td>
<td>6.87 [4.64] r^{lw}</td>
<td>4.64 [6.51] r^{lw}</td>
</tr>
</tbody>
</table>
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
Interaction

GMM tests, price momentum

<table>
<thead>
<tr>
<th></th>
<th>Size</th>
<th>Age</th>
<th>Trading volume</th>
<th>Credit ratings</th>
<th>Stock return volatility</th>
<th>Book-to-market</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.33</td>
<td>2.37</td>
<td>2.76</td>
<td>1.97</td>
<td>3.17</td>
<td>3.44</td>
</tr>
<tr>
<td>[se]</td>
<td>0.70</td>
<td>0.95</td>
<td>0.93</td>
<td>0.83</td>
<td>0.82</td>
<td>0.89</td>
</tr>
<tr>
<td>κ</td>
<td>0.09</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>[se]</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>p-val</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>mae</td>
<td>3.66</td>
<td>1.29</td>
<td>1.67</td>
<td>1.68</td>
<td>1.92</td>
<td>3.10</td>
</tr>
</tbody>
</table>
Interaction

GMM tests, earnings momentum

<table>
<thead>
<tr>
<th></th>
<th>Size</th>
<th>Age</th>
<th>Trading volume</th>
<th>Credit ratings</th>
<th>Stock return volatility</th>
<th>Book-to-market</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.74</td>
<td>2.75</td>
<td>2.56</td>
<td>1.14</td>
<td>2.74</td>
<td>7.20</td>
</tr>
<tr>
<td>[se]</td>
<td>0.60</td>
<td>1.55</td>
<td>1.32</td>
<td>0.72</td>
<td>0.76</td>
<td>2.36</td>
</tr>
<tr>
<td>κ</td>
<td>0.09</td>
<td>0.12</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>[se]</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>p-val</td>
<td>0.00</td>
<td>0.27</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>mae</td>
<td>4.37</td>
<td>1.08</td>
<td>2.30</td>
<td>1.35</td>
<td>1.95</td>
<td>2.88</td>
</tr>
</tbody>
</table>
Interaction

Size and price (earnings) momentum

Average predicted returns vs. Average realized returns chart.
Interaction

Book-to-market and price (earnings) momentum
Outline

1. The Q Model
2. Average Momentum Profits
3. Momentum Reversal
4. Long-run Risks in Momentum
5. Market States and Momentum
6. The Interaction of Momentum with Firm Characteristics
7. Risk Analysis
Risk Analysis
The consumption-investment model

Testing the consumption CAPM and the Q model jointly:

\[\begin{align*}
E[M_{t+1}(r_{it+1}^S - r_{t+1}^f)] &= 0, \\
E[M_{t+1}(r_{t+1}^f/i_{t+1})] &= 1, \\
E[M_{t+1}(r_{it+1}^{lw} - r_{t+1}^f)] &= 0, \\
E[r_{it+1}^S - r_{it+1}^{lw}] &= 0.
\end{align*} \]

\[M_{t+1} = \rho \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma}. \] Annual data
Risk Analysis

R^6: CCAPM with r^S, CCAPM with r^{lw}, Q-moment

Average real stock returns vs. Average real predicted stock returns

Average real levered investment returns vs. Average real predicted r^{lw}

Average realized stock returns vs. Average levered investment returns
Risk Analysis

SUE: CCAPM with r^S, CCAPM with r^{lw}, Q-moment
Conclusion
Summary and future work

The Q model broadly consistent with many aspects of momentum:
- Managers align investment properly with costs of capital
- Momentum per se might not imply investor irrationality

Several directions in the future:
- Value and momentum jointly, industry-specific parameters
- Value and momentum in currencies, International Q model
- Recent developments in CCAPM in the joint model