On the Size of the Active Management Industry

Ľuboš Pástor
Booth School of Business
University of Chicago
NBER, CEPR

Robert F. Stambaugh
The Wharton School
University of Pennsylvania
NBER

Q-Group Presentation, March 23, 2010
The “Active Management Puzzle”?

- Track record of the active management (AM) industry is poor
 - active equity mutual funds in aggregate: $\hat{\alpha} :< 0$ with $t \approx -2$
- Nonetheless, active management remains popular:
 - e.g., 87% of mutual funds assets are actively managed
The “Active Management Puzzle”?

- Track record of the active management (AM) industry is poor
 - active equity mutual funds in aggregate: \(\hat{\alpha} < 0 \) with \(t \approx -2 \)
- Nonetheless, active management remains popular:
 - e.g., 87% of mutual funds assets are actively managed
- Puzzle?
The “Active Management Puzzle”?

- Track record of the active management (AM) industry is poor
 - active equity mutual funds in aggregate: $\hat{\alpha} < 0$ with $t \approx -2$
- Nonetheless, active management remains popular:
 - e.g., 87% of mutual funds assets are actively managed
- Puzzle? not necessarily
The “Active Management Puzzle”?

- Track record of the active management (AM) industry is poor
 - active equity mutual funds in aggregate: \(\hat{\alpha} < 0 \) with \(t \approx -2 \)
- Nonetheless, active management remains popular:
 - e.g., 87% of mutual funds assets are actively managed
- Puzzle? not necessarily
- Decreasing returns to scale in the active management industry
 - industry’s \(\alpha \) depends on industry’s size:
 - \(\alpha \) becomes more elusive as more money chases it
 - past underperformance \(\Rightarrow \) industry should shrink, but
 - uncertainty about decreasing returns \(\Rightarrow \) large confidence interval for the size we should expect
The “Active Management Puzzle”?

- Track record of the active management (AM) industry is poor
 - active equity mutual funds in aggregate: $\hat{\alpha} < 0$ with $t \approx -2$
- Nonetheless, active management remains popular:
 - e.g., 87% of mutual funds assets are actively managed
- Puzzle? not necessarily
- Decreasing returns to scale in the active management industry
 - industry’s α depends on industry’s size:
 - α becomes more elusive as more money chases it
 - past underperformance \Rightarrow industry should shrink, but
 - uncertainty about decreasing returns \Rightarrow large confidence interval for the size we should expect
- In contrast, industry’s size would seem puzzling if it were known that returns to scale are constant
What We Do

- Develop an equilibrium model of active management (AM) with
 - competing utility-maximizing investors
 - competing fee-maximizing fund managers
- Solve for equilibrium size, alpha, and fees in AM industry
- Relate size of AM industry to past performance
- Analyze learning about returns to scale
What We Find

- AM industry can be large even if the track record is poor
- Investors’ learning about returns to scale is endogenous
 - what they invest depends on what they’ve learned
 - what they learn depends on what they invest
- Investors never learn the degree of returns to scale exactly
- Industry size can be suboptimal for a long time
- Other features of the model
 - industry size crucially depends on the degree of competition
 - $\alpha > 0$
 - “investment externality”
Two types of agents:

- M managers of active funds (have skill but no capital)
- N investors in active funds (have capital but no skill)

Benchmark-adjusted return to investors from fund $i = 1, \ldots, M$:

$$r_i = \alpha_i + u_i$$
$$u_i = x + \epsilon_i$$

$\sigma_x > 0 \Rightarrow$ cannot fully diversify risk by buying many funds
Model: Expected Profits

- Benchmark-adjusted expected total profit to fund i’s manager and investors:

$$\pi_i = s_i \left(a - b \frac{S}{W} \right)$$

s_i . . . size of manager i’s fund
$S = \sum_{i=1}^{M} s_i$. . . aggregate size of the AM industry
W . . . total investable wealth of the N investors

- Manager i charges a proportional fee $f_i \Rightarrow$ investors expect benchmark-adjusted rate of return

$$\alpha_i = a - b \frac{S}{W} - f_i$$

- Decreasing returns to aggregate scale: $b > 0$
Figure 1. Decreasing returns to scale in the active management industry.
Model: Optimization

- Each manager i chooses f_i to maximize fee revenue:
 \[
 \max_{f_i} f_i s_i
 \]

- Investors know f_i's before making investment decisions

- Each investor j chooses weights δ_j on the M funds to maximize
 \[
 \max_{\delta_j} \left\{ \delta_j' E(r|D) - \frac{\gamma}{2} \delta_j' \text{Var}(r|D) \delta_j \right\}
 \]

- All investors have same risk aversion $\gamma > 0$, same wealth, and same information set D
- Unrestricted allocations to benchmarks and T-bill
- No short sales of funds ($\delta_j \geq 0$)
Equilibrium with Known a and b

- We solve for a symmetric Nash equilibrium
 - First for investors’ allocations, as a function of fees, then for managers’ fees
 - In equilibrium, fees and α’s are equal across funds ($f_i = f$, $\alpha_i = \alpha$):

 \[
 f = \frac{a \gamma \sigma^2}{2 \gamma \sigma^2 + (M - 1)p}
 \]

 \[
 \alpha = a \left(1 - \frac{\gamma \sigma^2}{2 \gamma \sigma^2 + (M - 1)p}\right) \left(1 - \frac{Mb}{\gamma \sigma^2 + Mp}\right)
 \]

 \[
 \frac{S}{W} = \frac{Ma}{\gamma \sigma^2 + Mp} \left(1 - \frac{\gamma \sigma^2}{2 \gamma \sigma^2 + (M - 1)p}\right),
 \]

 where

 \[
 p = \frac{N + 1}{N} b + \gamma \sigma^2_x
 \]
Equilibrium Fee

- $M \uparrow \Rightarrow f \downarrow$, due to competition among managers
 - For $M = 1$, we have $f = a/2$
 - For $M \to \infty$, we have $f \to 0$

- Note: f is the discretionary component of the total fee
 - f = fee the manager sets while considering its effect on fund size
 (any competitive proportional fee is part of a)

- Also, $f \uparrow$ when $a \uparrow$, $b \downarrow$, $\sigma_\epsilon \uparrow$, $\sigma_x \downarrow$, and $N \uparrow$
In general, the equilibrium alpha is positive,

$$\alpha > 0$$

because investors

1. demand compensation for risk ($$\sigma_x$$ and possibly also $$\sigma_\epsilon$$)
2. internalize some of the “investment externality”
Investors demand compensation for two kinds of risk:

- σ_ϵ: diversifiable if $M \to \infty$
- σ_x: non-diversifiable even if $M \to \infty$

When $M \to \infty$, diversifiable risk σ_ϵ drops out:

$$\alpha = a \left(\frac{(1/N) b + \gamma \sigma_x^2}{[(N+1)/N] b + \gamma \sigma_x^2} \right)$$

When $N \to \infty$ as well,

$$\alpha = a \left(\frac{\gamma \sigma_x^2}{b + \gamma \sigma_x^2} \right)$$
“Investment externality”:
- new investors impose a negative externality on existing investors by diluting their returns

When N is finite, investors internalize some of the reduction in profits resulting from their own investment

$\Rightarrow \alpha > 0$ even if there is no risk

When $M \to \infty$ and $\sigma_x \to 0$,

$$\alpha = \frac{a}{N + 1}$$

Note: $\alpha \downarrow$ when $N \uparrow$
The effect of M on α is ambiguous; two opposing effects:

- $M \downarrow \Rightarrow \alpha \downarrow$ because fees \uparrow
- $M \downarrow \Rightarrow \alpha \uparrow$ because investors demand compensation for σ_ϵ
Equilibrium Size of the AM Industry

- When \(N \to \infty \), we obtain a familiar mean-variance result:

\[
\frac{S}{W} = \frac{E(r_A|D)}{\gamma \text{Var}(r_A|D)}
\]

where \(r_A \) is the aggregate benchmark-adjusted return.

- When \(N \to \infty \) and \(M \to \infty \),

\[
\frac{S}{W} = \frac{a}{b + \gamma \sigma_x^2} = \frac{\alpha}{\gamma \sigma_x^2}
\]

- When \(N \to \infty \) and \(M = 1 \),

\[
\frac{S}{W} = \frac{\alpha}{\gamma (\sigma_x^2 + \sigma_\epsilon^2)}
\]
Let $S^* = \text{size maximizing expected total profit}, \ S \left(a - b \frac{S}{W} \right)$

$$\frac{S^*}{W} = \frac{a}{2b}$$

The equilibrium size $S \leq \bar{S} = 2S^*$
\[a - b \left(\frac{S}{W} \right) \]
Let $S^\ast = \text{size maximizing expected total profit}, \ S \ (a - b \frac{S}{W})$

$$\frac{S^\ast}{W} = \frac{a}{2b}$$

The equilibrium size $S \leq \bar{S} = 2S^\ast$

When $M = 1$, there is underinvestment, $S \leq S^\ast$

- Manager-monopolist charges high fee
- $S = S^\ast$ only if $N \rightarrow \infty$ and $\sigma_x^2 + \sigma_\epsilon^2 = 0$
When $M \to \infty$,

$$\frac{S}{S^*} = \frac{2b}{\frac{N+1}{N} b + \gamma \sigma_x^2}$$

⇒ *underinvestment* ($S < S^*$) or *overinvestment* ($S > S^*$)

When $M \to \infty$ and $\sigma_x^2 \to 0$, there is *overinvestment*:

$$\frac{S}{S^*} = \frac{2N}{N + 1}$$

$N \to \infty$ ⇒ $S \to \bar{S} = 2S^*$
Unknown a and b

- Now suppose a and b are unknown

\[
E\left(\begin{bmatrix} a \\ b \end{bmatrix} \mid D\right) = \begin{bmatrix} \tilde{a} \\ \tilde{b} \end{bmatrix}
\]

\[
\text{Var}\left(\begin{bmatrix} a \\ b \end{bmatrix} \mid D\right) = \begin{bmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{bmatrix}
\]

- For simplicity, let $M \to \infty$ and $N \to \infty$
 - Then $f \to 0$ and $\alpha = a - b(S/W)$

- Solve for a symmetric Nash equilibrium among investors
Unknown a and b (cont’d)

► In equilibrium, S/W is the (unique) real positive solution to

$$0 = \tilde{a} - \frac{S}{W} \left[\tilde{b} + \gamma (\sigma_a^2 + \sigma_x^2) \right] + \left(\frac{S}{W} \right)^2 2\gamma \sigma_{ab} - \left(\frac{S}{W} \right)^3 \gamma \sigma_b^2$$

as long as $\tilde{a} > 0$. If $\tilde{a} \leq 0$, then $S/W = 0$.

► In this setting,

$$E(r_A|D) = \tilde{a} - \tilde{b} \frac{S}{W}$$

$$\text{Var}(r_A|D) = \sigma_a^2 + \sigma_x^2 - 2 \left(\frac{S}{W} \right) \sigma_{ab} + \left(\frac{S}{W} \right)^2 \sigma_b^2$$

$$\Rightarrow \frac{S}{W} = \frac{E(r_A|D)}{\gamma \text{Var}(r_A|D)}$$
Prior Beliefs for a and b

- One prior for a, two priors for b
 - **Prior 1**: $b = 0$, known (constant returns to scale)
 - **Prior 2**: $b \geq 0$, unknown (decreasing returns to scale)

- Assume
 - $S/W = 0.9$ is optimal under Prior 2
 - Prior mean of $\alpha = 10\%$ per year at $S/W = 0.9$
 - Risk aversion of $\gamma = 2$
 - Volatility of aggregate active return $\sigma_x = 2\%$ per year
 - Close to empirical estimates for active equity mutual funds
Figure 2. Prior distributions.
Implied Prior Beliefs for α

- Implied prior for α depends on S/W when $b \geq 0$

 \[\alpha = a - b(S/W) \]

- **Prior 2 is more pessimistic about α** than Prior 1

 - α is smaller under Prior 2 for any $S/W > 0$

- Nonetheless, we’ll see that **Prior 2 investors invest more** in AM than Prior 1 investors after a negative track record
Updated Beliefs

- 300,000 samples of simulated AM returns and allocations
 - For each sample, randomly draw a and b from their priors
- In each year t, beginning with $t = 1$, we perform three steps:
 1. Solve for equilibrium allocation to AM
 - Restrict $(S/W)_t$ between 0 and 1
 2. Construct AM return
 - $r_{A,t} = a - b(S/W)_t + x_t$, where $x_t \sim N(0, \sigma^2_x)$
 3. Update beliefs about a and b
 - Regress r_A on S/W and constant \Rightarrow intercept a, slope $-b$

... then back to step 1
Figure 3. Posterior standard deviations.
Figure 4. Deviations from true values.
Learning About Returns to Scale

- “Endogeneity”: learn \Rightarrow invest \Rightarrow learn \Rightarrow invest \Rightarrow ...
- Learning about the intercept and slope from

$$r_t = a - b\left(\frac{S}{W}\right)_t + \epsilon_t$$

- $\left(\frac{S}{W}\right)_{t+1}$ depends on beliefs about a and b at time t
- If $\left(\frac{S}{W}\right)_t$ stops changing, learning about a and b stops
 \Rightarrow Never learn a and b
- $\left(\frac{S}{W}\right)_t$ converges to optimal level quickly when b is high, but it can stay suboptimal for a long time when b is low
Learning When $b \geq 0$

- Investors learn differently under Priors 1 and 2 because $(S/W)_t$ affects learning when $b \geq 0$ but not when $b = 0$
- Representative examples of learning paths: Figure 5
 - Three values of b: “low”, “median”, “high” (5th, 50th, 95th percentiles of the prior distribution)
 - Given b, pick a such that the “true” $S/W = 0.5$
 - Use (a, b) to generate random samples of returns
- Results:
 - When b is high, investors find the optimal S/W quickly
 - When b is low, investors can get stuck at “wrong” S/W for a long time
Figure 5. Examples of learning paths.
Role of Historical Performance

- Plot the posterior of the equilibrium S/W conditional on $t(\hat{\alpha})$
 - Note: $t(\hat{\alpha}) = \hat{\alpha}\sqrt{T}/\sigma_x$

- How much is invested in AM when $\hat{\alpha}$ is significantly negative?

- Prior 1 ($b = 0$) investors invest nothing
 - $t(\hat{\alpha})$ is a sufficient statistic for S/W

- Prior 2 ($b \geq 0$) investors can invest a lot
 - despite Prior 2 being more pessimistic about α than Prior 1
 - $t(\hat{\alpha})$ is NOT a sufficient statistic for S/W
Figure 6. Posterior distribution of the equilibrium allocation to active management conditional on the sample t-statistic.
Figure 7. Alternative prior distribution.
Figure 8. Equilibrium allocation to active management under the alternative prior.
Differences from Berk and Green (2004)

- **Focus**
 - BG: Capital flows across funds
 - We: Size of the AM industry

- **Decreasing returns to scale**
 - BG: At individual fund level
 - We: At aggregate industry level

- **Parameter uncertainty**
 - BG: a unknown, b known
 - We: a and b both unknown

- **Fund managers setting fees**
 - BG: Monopoly
 - We: Competition
Differences from Berk and Green (2004) (cont’d)

- Equilibrium alpha
 - BG: $\alpha = 0$; no explicit investor optimization
 - We: $\alpha > 0$; equilibrium outcome for optimizing investors

- Our model comes closest to BG when . . .
 - $M = 1$ (a single fund manager) \Rightarrow same fee setting
 - $N \to \infty$ (many investors) \Rightarrow no investment externality
 - $\sigma_\epsilon = \sigma_x = 0$ (no risk) \Rightarrow no compensation for risk

Equilibrium then features $\alpha = 0$, $S = S^*$, and $f = a/2$, as in BG
Conclusions

- Size of AM industry can be large even if the track record is poor
 - Due to decreasing returns to scale
- Learning about returns to scale is “endogenous” and slow
 - Never learn the degree of returns to scale exactly
 - Industry size can be suboptimal for a long time

- Interesting features of the model
 1. Industry size crucially depends on the degree of competition
 2. $\alpha > 0$
 3. “Investment externality”