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1 Introduction 

We consider an investor who trades at 28-, 14-, or seven-day intervals in the S&P 500 index and 

a risk-free bond, subject to proportional transaction costs. The investor maximizes the expectation 

of her increasing and concave utility function of cash wealth at the end of the trading interval. We 

then consider overlaying on this portfolio a zero-net-cost portfolio, the Option Trading or OT 

portfolio, consisting of long and short positions in any number of European-style call and put 

options on the index and borrowing or lending at the risk-free rate. We account for transaction 

costs in the trading of options by buying the options at their ask price and selling them at their bid 

price. We apply standard results of stochastic dominance and state sufficient conditions under 

which the investor’s portfolio, overlaid with the zero-net-cost portfolio, stochastically dominates 

the investor’s original portfolio. These conditions apply irrespective of the investor’s initial wealth 

and utility function. An intuitive interpretation of stochastic dominance is that the investor 

increases her expected utility by shifting income from states where the index level is high to states 

where the index level is low at zero net cost, while maintaining the same or higher expected 

portfolio return. 

In almost every month from 1990 to 2013 we identify zero-net-cost portfolios that 

potentially imply stochastic dominance, using only information available at the time that the 

portfolio is formed. For each date the set of admissible portfolios is derived by a numerical 

algorithm presented in the appendix, for which the total payoff is non-negative at low values of 

the index support, intersects the support at a single value, becomes non-positive at high values and 

has a positive expectation. The optimal portfolio is selected from the set by maximizing a given 

criterion. The resulting portfolios are of variable composition and contain both call and put options 

with either 28 days, or 14 days, or seven days to maturity. Using realized returns, we then verify 

that the identified portfolios would have increased, on average, the utility of any risk-averse 

investor holding the underlying index and the risk-free asset. The evidence for mispricing is 

stronger for shorter maturity options than for their longer term counterparts both in terms of 

profitability and in the stochastic dominance tests. As a robustness check we repeat our tests using 

options on the CAC and DAX indices and obtain similar results. 

Stochastic dominance is prevalent when the at-the-money (ATM) implied volatility (IV) is 

high and/or the right skew is low. The portfolios include more than double the number of calls 
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than puts and the call positions are overwhelmingly short positions, consistent with the practice of 

writing covered calls. This contradicts the common belief that puts but not calls are overvalued.1 

During the 2008 to 2009 financial crisis, the majority of the portfolio positions are net short put 

positions. We interpret this finding as investor overreaction to the crisis in the form of inflated put 

prices. Furthermore we find that the option portfolio composition depends on characteristics of the 

projected index distribution. We also refute the conjecture that the OT portfolios primarily consist 

of long positions in options with IV below the IV smile and short positions in options with IV 

above the IV smile: such options constitute a small component of the OT portfolio. We conclude 

that at least some S&P 500 call and put options are significantly mispriced relative to the index. 

This mispricing is qualitatively different from other anomalous results such as overpriced straddles 

in earlier studies, all of which were studied in a frictionless economy.2 In our case the mispriced 

portfolios correspond to a tradable anomaly, insofar as an investor holding an index-tracking 

tradable fund such as a SPDR can costlessly increase her returns without incurring additional risk. 

Stochastic dominance tests are subject to the criticism that they are based on the maintained 

hypothesis that the index return is the only priced factor and the stochastic discount factor is 

monotone decreasing in the index return. Without relying on this maintained hypothesis we test 

whether the excess returns of the OT portfolios are rewards for risks other than market risk. To 

this end we adjust the excess returns with the three factors in Fama and French (1993) and the 

factors “Jump”, “Volatility Jump”, “Volatility”, and “Liquidity” in Constantinides, Jackwerth, and 

Savov (2013). In all cases we find that the excess returns of the OT portfolios remain positive and 

statistically significant. 

Finally we test whether a U-shaped stochastic discount factor chosen from the observed 

index and option prices nullifies our stochastic dominance results in a frictionless setting. Given 

the wide variety of models and empirical estimates of the stochastic discount factor and the 

dependence of their results on the unobservable frictionless option prices, we choose the only 

model for which an explicit expression for the stochastic discount factor involving observable ex 

post random variables is available, the Christoffersen, Heston, and Jacobs (2013) GARCH-based 

extension of the Heston and Nandi (2000) model. We extract the parameters of the P distribution 

                                                           
1 See Bondarenko (2014) and Driessen and Maenhout (2007). 
2 See Broadie, Chernov, and Johannes (2007, 2009). 
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from index returns and the missing single parameter that maps the P distribution into a Q  

distribution from the option market by trading at the midpoint of each option’s bid-ask spread.3 

We find that the risk-adjusted OT portfolio excess returns are even higher than the unadjusted 

returns, while the returns for the OT portfolios based on model prices lie outside the confidence 

intervals bootstrapped around observed market prices. We conclude that the high OT portfolio 

excess returns are not rewards for risk reflected in this particular U-shaped stochastic discount 

factor, while the options entering the OT portfolios are mispriced with respect to their universe as 

reflected in the stochastic discount factor extracted from it. 

Our paper builds on several strands of the options literature. It builds on the literature that 

invokes the absence of stochastic dominance in a frictionless economy.4 It also builds on the 

literature that invokes the absence of stochastic dominance in an economy with frictions. 

Constantinides and Perrakis (2002, 2007) derive bounds on option prices under proportional 

transaction costs such that a violation of these bounds implies stochastic dominance for any risk-

averse investor. Constantinides, Jackwerth, and Perrakis (2009) identify in-sample violations of 

these bounds for European S&P 500 options. Constantinides, Czerwonko, Jackwerth, and Perrakis 

(2011) identify similar in-sample violations of the call upper bound on American S&P 500 futures 

options in about one-third of the sample months; they use a zero-net-cost portfolio to exploit these 

violations, apply the statistical tests of Davidson (2009) and Davidson and Duclos (2013) to the 

realized returns of the index and the option, and verify that the modified portfolio stochastically 

dominates the original portfolio over the entire time series of returns. This extension of the 

literature is, to our knowledge, the only available approach for pricing options in the presence of 

transaction costs.5 

The key difference between the earlier results and the current paper is that we allow the 

investor to include options of different type, long and short calls and puts of different degree of 

moneyness, in a zero-net-cost portfolio, not just one type of options. We identify the set of 

portfolios that imply stochastic dominance and use different criteria to select the “best” portfolio 

                                                           
3 We do not impose put-call parity in the OT options, which is routinely applied in the frictionless models even though 

it does not hold at the bid-ask spread midpoint. Parity, as well as “smoothing” of the data, is imposed in estimating 

the missing parameter, following standard practice in the frictionless asset pricing literature. 
4 See Levy (1985), Oancea and Perrakis (2014), Perrakis and Ryan (1984), and Ritchken (1985). 
5 For the failure of traditional no-arbitrage approaches in the presence of proportional transaction costs see Perrakis 

and Lefoll (2004) and Soner, Shreve, and Cvitanic (1995). 
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from the set. This allows us to identify mispricing of options in almost every sample month, as 

opposed to the earlier results that allow for only one type of options, short calls violating a given 

criterion, in the zero-net-cost portfolio, and identify mispricing only in approximately one-third of 

the sample months. Furthermore the gain achieved by the investor by holding our new zero-net-

cost portfolios is major, especially for the shorter maturity options, since it not only reduces the 

risk of the index but also increases the realized return by about 2% annually. Note that this expected 

realized return equals 50% of the assumed cum-dividend expected return on the index in excess of 

the riskless rate. 

Our results also relate to the literature that attempts to reconcile the underlying P  

distribution of returns extracted from observed returns with the risk neutral Q  distribution 

extracted from option prices. Since frictionless option prices are unobservable, the extraction of 

the Q  distribution is subject to both model and estimation errors.6 These sources of errors probably 

account for the widely varying estimates of the parameters required to reconcile the P  and Q  

distributions.7 

We concentrate on a particular subset of such frictionless asset pricing models which test 

a key assumption of the stochastic dominance approach, that the stochastic discount factor is non-

increasing in wealth for at least a subset of investors that hold only the index portfolio and the risk-

free asset. Ait-Sahalia and Lo (2000) and Jackwerth (2000) estimate a non-monotonic stochastic 

discount factor for the index option market—the stochastic discount factor puzzle. Non-

monotonicity is rationalized with stylized models of frictionless economies based on estimates 

from the reconciliation of the P  and Q  distributions by Bakshi, Madan, and Panayotov (2010), 

Chabi-Yo, Garcia, and Renault (2008), and Christoffersen, Heston, and Jacobs (2013). Barone-

Adesi, Dall’O, and Vovchak (2012), Barone-Adesi, Engle, and Mancini (2008), Beare (2011), and 

Beare and Schmidt (2016) empirically test the non-monotonicity of the stochastic discount factor. 

The existence of a locally increasing stochastic discount factor may imply the existence of 

an option portfolio dominating the index in the frictionless world but does not justify market 

inefficiencies such as the tradable anomaly corresponding to our portfolios. We verify here 

                                                           
6 See Rubinstein (1985, p. 465). 
7 See Bliss and Panigirtzoglou (2004), Eraker, Johannes, and Polson (2003), Rosenberg and Engle (2002), and Ziegler 

(2007). 
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whether our OT portfolios are “correctly” priced in a frictionless world by concentrating on the 

particular type of non-monotonicity that involves a U-shaped stochastic discount factor increasing 

in the high range of index returns. Since our zero net cost OT portfolios have negative payoffs at 

the high return range, such a U-shaped stochastic discount factor is the most likely to generate a 

“correct” value for them, namely a value that is not significantly different from zero.8 It is on this 

basis that we conclude that the OT portfolios are mispriced in a frictionless world. 

Finally another strand of the literature addresses the option traders’ and intermediaries’ 

credit constraints and funding liquidity. Bates (2003, pp. 400-401) points out the inconsistency of 

the representative investor assumption with the actual operations of option markets in hedging 

operations involving crash risk, as well as the inability of models to combine transaction costs with 

no arbitrage. Bollen and Whaley (2004), Bondarenko (2014), and Garleanu, Pedersen, and 

Poteshman (2009) study the effect of the buying pressure on index put options. Chen, Joslin, and 

Ni (2016) and Constantinides and Lian (2016) study the joint effect of the buying and selling 

pressure on index put options. 

The paper is organised as follows. We present the theory of stochastic dominance in 

Section 2. We discuss the data in Section 3 and the empirical methodology in Section 4. The main 

empirical results are presented in Section 5. In Section 6 we address the relation between stochastic 

dominance and the smile. In Section 7 we investigate the characteristics of the dominating 

portfolios and the options that are included in them. Section 8 examines whether various priced 

factors or a U-shaped stochastic discount factor explain our results. In Section 9 we present results 

based on options on the CAC and DAX indices. We conclude in Section 10. 

 

2 Stochastically Dominating Portfolios 

We consider an investor who trades at discrete dates 28, or 14, or seven days apart, 0,1, ...,t T , 

in an index portfolio and a risk-free asset (cash), subject to proportional transaction costs for the 

                                                           
8 By contrast, non-monotonicity at the left tail, such as the one occasionally observed in the Barone-Adesi, Engle and 

Mancini (2008, figure 5) results, will, if anything, increase the value of the OT portfolios relative to their expected 

returns under the P-distribution. 
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index. We denote the index price at date t by 
t

S . At the terminal date, T , the wealth is converted 

into cash, net of transaction costs. The investor maximizes the expectation of her utility of terminal 

cash wealth. We assume that the utility function is von Neumann-Morgenstern, strictly increasing, 

and concave. We denote by  , ,
t t

V x y t  the value function (indirect utility) at date ,t t T , where 

( , )
t t

x y  denote the holdings in the cash and index accounts, respectively. We assume that the 

equity premium is positive so that the investor optimally invests a non-negative amount in the 

index portfolio at each date. 

Constantinides (1979) addresses this problem under very general conditions and proves 

two properties which are useful for the problem at hand. First, he proves that  , ,
t t

V x y t  is strictly 

increasing and concave in ( , )
t t

x y . This implies that the marginal utility of the value function with 

respect to the index account,  , ,y t tV x y t , is monotone decreasing in ty at any date ,t t T . 

Second, he proves that there exists a region of no-transactions such that the investor refrains from 

transacting at date t if the portfolio holdings lie in it. In the special case of constant relative risk 

aversion utility this region is a cone, with no transactions if / tt t t
y x   . Constantinides (1986) 

shows that the no-transactions region is wide even for a very small transactions cost rate and the 

investor refrains from trading most of the time, in the sense that the utility losses from not adjusting 

the portfolio to its frictionless optimal proportions are very low for all realistic parameter values. 

For our purposes, we do not make the limiting assumption that the relative risk aversion is 

constant or the dynamics are limited to diffusion. Nevertheless we assume that an investor who 

starts at the beginning of the month somewhere in the middle of the no-transactions region 

optimally refrains from trading in the short time span of 28, or 14, or seven days. Note that even 

if the investor refrains from trading for longer periods such as several months, our results remain 

approximately correct since the width of the no-transactions region stipulates little trading.9 

Combined with the first result that  , ,y t tV x y t  is monotone decreasing in
t

y  and the fact that the 

investor has a positive investment in the index, we conclude that  1 1, , 1y t tV x y t    is monotone 

decreasing in the stock price, 
1t

S


. 

                                                           
9 We verify this using the numerical approach of Czerwonko and Perrakis (2016) which assumes a constant relative 

risk aversion investor, jump diffusion asset dynamics, and a finite fixed horizon. The observed intermediate trading 

in numerical simulations under all realistic parameter values is insignificant even for a two-year horizon. 
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We consider a zero-net-cost portfolio at date zero consisting of J European-style call and 

put options on the index with 28 days to expiration, and borrowing or lending at the risk-free rate. 

We also consider zero-net-cost portfolios with options 14 days or seven days to expiration. The 

options are bought at their ask price and written at their bid price. 

Let  t
A S  denote the payoff of the zero-net-cost portfolio at date t , where the net cash 

flow of the portfolio is converted into units of the index account, net of transaction costs. If 

  1 1 1( ) , , 1 0,t t y t tE A S V x y t         (1) 

then the investor increases her utility by overlaying this zero-net-cost portfolio over her original 

investment in the index and the risk-free asset. The following lemma provides sufficient conditions 

for equation (1) to hold. 

Lemma: A sufficient condition for equation (1) to hold is that (a)  1( ) 0t tE A S    and (b) there 

exists a number S  such that 1( ) 0tA S    for 
1t

S S

  and 1( ) 0tA S    for 

1t
S S


 . 

To see this, note that conditions (a) and (b) imply 

  

    

 

1

1 1 1

1 1 1

1 1 1 1 1

( ) , , 1

( )] [ , , 1 ]

(because , , 1  is decreasing in  and ( ) 0 as )

0.

t

t t y t t

t t y t t S S

y t t t t t

E A S V x y t

E A S E V x y t

V x y t S A S S S



  

   

    



 

  



 

This completes the proof. Note that, for an investor with linear utility,  1 1, , 1y t tV x y t    is a 

positive constant and inequality (1) implies that . The lemma states that when

 t
A S has the shape indicated by condition (b) then condition (a) is necessary for stochastic 

dominance. More intuitively, for the chosen shape of  t
A S  an increase in the utility of the risk 

neutral investor implies an increase in the utility of all risk averse investors. In Section 4 we 

describe the construction of zero-net-cost portfolios that satisfy the sufficient conditions of the 

lemma. 

 

 

 1( ) 0t tE A S  
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3 Description of the Data 

The main empirical results are based on monthly and weekly options on the S&P 500 index. We 

obtain prices of monthly S&P 500 European puts and calls 28, 14, and seven days to maturity from 

the Chicago Board Options Exchange (CBOE) tape with intraday quotes from January 1990 to 

February 2013, yielding 278 dates.10 The 14-day options are the same 28-day options with respect 

to moneyness and expiration date but observed 14 days to expiration. The seven-day options are 

the same 28-day options with respect to moneyness and expiration date but observed seven days 

to expiration. We also present results over the shorter time period in which weekly options are 

traded. For robustness we replicate our results on the French CAC and German DAX indices for 

which we use OptionMetrics data with end-of-day prices for their European options.11 

We delete obvious data entry errors such as multiple or missing data or bid prices exceeding 

the ask prices. We filter the data by checking that the put-call parity and convexity with respect to 

the strike price under transaction costs in the index and bid-ask prices of options hold. We 

conservatively use ten basis points as a one-way transactions cost rate for index trades.12 We also 

apply liquidity filters to guarantee that only options that can be traded under realistic conditions 

enter into our choice set. We include call prices with bid prices at least 15 cents and moneyness 

within 0.96-1.08. For put options we discard all options more than 4% in the money but admit all 

options with bid prices of at least 15 cents. This asymmetry in admitting put options is justified by 

the relatively higher liquidity of OTM puts. Lastly we only admit quotes updated within the past 

15 minutes. After applying our filters we exclude four dates on which we cannot find at least three 

call options and three put options available for selection in our portfolios. 

In Table 1 we display statistics on the average number of 28-, 14-, and seven-day S&P 500 

options that pass the filters each month and are available for inclusion in the zero-net-cost 

portfolios. In general the market for puts is more liquid than the market for calls and, therefore, 

the number of puts that pass the filters exceeds the number of calls. In the years 2000 and 2004 the 

                                                           
10 Unreported results for 21-day options are generally similar to the ones for 28-day options. 
11 Other optioned indices such as EURO STOXX 50 and FTSE are eliminated either because of lack of data or 

settlement terms that make the results non-comparable to our base case. 
12 Note that the lower this rate the more arbitrage violations are found. With no transaction costs for the index and 

with trading in options at the bid-ask midpoint virtually all options prices are rejected because of arbitrage violations; 

see also Ioffe and Prisman (2013). 
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CBOE increased the quote update frequency and the number of strikes at which options are traded 

generally increased with the index level given a relatively constant increment between pairs of 

adjacent strikes. As a result, the average number of options that pass the filters doubles after 2004. 

We take these changes into account when we report the results on the stochastic dominance tests 

and when we describe the characteristics of the options that are frequently included in the zero-

net-cost portfolios. The table also describes the average number of options included in these 

portfolios. 

[Table 1 here] 

We build the zero-net-cost portfolios at 3:00 PM SET, one hour before market closing, thus 

avoiding possible distortions of the closing market inherent in end-of-day prices. We execute the 

trades 15 minutes later for these same options which were found to be optimal to include in the 

portfolio, readjusting their weights with the same objective as at the 3 PM portfolio derivation time 

for the data observed one minute before the actual trade. For a limited number of options in the 

optimal portfolios, this additional derivation takes a few hundredths of a second, thus leading to 

little if any distortion due to the additional trade execution time. Since SPX options are exercised 

at the opening price of the terminal date, we collect the exercise proceeds by using the opening 

value of the index and ascribe the proceeds to the ending position of the index. 

We derive the index price from the cost-of-carry relation between the observed spot index 

and its nearest-to-maturity futures contract as follows. We use a data set from Tick Data. We 

estimate the implied index price by recording implicit cost-of-carry coefficients from observed 

spot-futures pairs for one hour before our estimation or trade time in one-minute intervals. We 

then use the median value of this coefficient to convert the most recent futures value into the 

implied spot index price. Note that as of 2006 the increased quality of reporting of the index price 

renders the difference between the cash index and its derived price negligible. We derive the 

dividend yield by using cash daily payouts obtained from Standard and Poor. For the interest rate 

we use the three-month constant maturity T-bill rate obtained from the Federal Reserve Economic 

Data. Finally we assume a one-way transaction costs rate of 0.25%. 

For our base case results we model the index price as lognormally distributed with average 

cum dividend return equal to 4%, plus the annualized risk-free rate, as per the long-term historical 

average. We forecast the index return volatility till the expiration date by using the CBOE VIX 
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volatility adjusted by the mean forecast difference between the VIX and the realized volatility for 

the period 1986 to the current date; both the VIX and the realized volatility of daily returns are 

measured in four-week intervals without overlap, with the latter quantity defined as the square root 

of 252 times the mean squared daily return.13 The amount by which the VIX exceeds the realized 

volatility (the negative volatility risk premium) is relatively stable over time, about 4.5-4.8%. 

There are fewer options available for our robustness checks with the CAC and DAX 

indices. Although closing prices are available from January 2002 for DAX and April 2004 for 

CAC, bid and ask option prices for both indices exist only since 2006. We use the data set which 

contains bid and ask prices to construct our trades and both data sets to construct our volatility 

projections. In constructing our portfolios we use the data from January 2006 to February 2013, 

with the latter date corresponding to the end of our S&P 500 data. This results in 86 potential dates 

for options maturing on the third Friday of each month, reduced to about 80 dates due to data 

availability and our requirement of choosing from at least three call and put options after deletions 

due to violations of the no arbitrage conditions. For the latter we use the same approach and 0.1% 

transaction cost rate as in the S&P 500 options. Since the resulting sample has less than one third 

of the 278 dates available for the full sample of S&P 500 options, we also present results with the 

January 2006 to February 2013 S&P 500 data to maintain comparability between indices. 

Since we have only end-of-day data for the CAC and DAX indices, we derive the dividend 

adjustment for the index price as follows. We record all put-call pairs within the moneyness range 

of 0.98-1.02 and for each pair we derive the adjustment for the index price which makes the put-

call parity hold exactly with the use of bid-ask midpoint option prices if available and last prices 

otherwise. The median value of these adjustments becomes the final dividend adjustment for the 

closing price of the index. Similarly the median IV of these inferred put-call parities is used as the 

ATM IV for the corresponding day. 

                                                           
13 If options are, on average, in-sample mispriced we may expect this average gap to affect possible out-of-sample 

mispricing. Because of the importance of the measurement of this gap, we use two additional variants of the VIX 

forecast, both in terms of the logarithm of the squared VIX. In the first variant, we measure the average difference 

between this quantity and a similar quantity for realized returns as above. In the second variant, we regress this quantity 

for realized returns against a similar one for VIX and at the trading date we apply our estimates to the previous day 

closing value of VIX to form a forecast. In this last variant we also vary the length of the rolling window used to 

estimate the regression coefficients. None of these variants affect the out-of-sample results. 
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Our volatility projections differ for the CAC and DAX indices. For CAC we use the ATM 

IV to form our projections, since it introduced its volatility index only in 2011. With this ATM IV 

we record the projection errors for all dates preceding a given trading date and subtract the average 

error from the observed ATM IV for this given date, an adjustment typically of the order of 2.5%. 

For DAX we use the ATM IV for the period preceding the introduction of the DAX volatility index 

(VDAX) in October 2005 and the VDAX index thereafter; in practice, our ATM IV estimates are 

very similar to the VDAX. As for S&P 500 and CAC, we adjust the VDAX for the projection 

errors, typically of the order of 1%. These adjustments for CAC and DAX differ from the typical 

adjustment for S&P 500 by about 5% for the same period from January 2006 to February 2013. 

 

4 Empirical Methodology 

We denote by IT (index trader) the investor who holds an optimal portfolio of the index and cash 

and by OT (option trader) the investor who holds the same portfolio as the IT plus the zero-net-

cost portfolio with payoff  1t
A S

  at maturity. Our empirical methodology involves two steps. In 

the first step, for the portfolios with options 28 days to maturity, we construct in-sample zero-net-

cost portfolios at dates on which we have options with 28 days to maturity. This step is independent 

of any assumptions about the IT investor. We follow a similar procedure to construct portfolios 

with options 14 and seven days to maturity. In the second step, we verify out of sample the 

stochastic dominance (SD) of the OT investor’s terminal wealth relative to the IT investor’s 

terminal wealth by applying SD tests over the entire sample period. Based on the lemma stated in 

Section 2, the IT and OT comparisons are done on the basis of the time series of the corresponding 

index values in their portfolios at the option expiration dates. 

In our base case, the IT investor is an index fund holding 100,000 index units, which 

corresponds to approximately $150 million in index holdings in our sample period. In this case we 

consider the scale of trading in one option per unit index as realistic. For instance, writing 0.5 calls 

with strike 
1

K  and buying 0.5 calls or puts with strike 
2

K  per unit index exhausts our limit.14 

                                                           
14 In unreported results we also consider trade sizes not easily available even for investors with large holdings, allowing 

trading for up to 1,000 options per unit index. In this case, the expected return of the OT investor is higher. 
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At the beginning of the 28-day (or 14-day or seven-day) period, t , we build a grid of 

feasible values of , 0S S  , that allows us to find a zero-net-cost portfolio from among the universe 

of 28-day (or 14-day or seven-day) options such that the payoff  1t
A S


 in 28 days (or 14 days or 

seven days) satisfies the following conditions:  1
0

t
A S


  for 

1
0.6

t t
S S S


  ;  1

0
t

A S


 for 

1t
S S


 ; and  1( ) 0t tE A S   . For each value of S , we choose the portfolio of options that 

maximizes the expected payoff,  1( )t tE A S  , subject to the conditions  for 

1
0.6

t t
S S S


   and  1

0
t

A S


 for . Thus we form a set ˆ( )S  of OT portfolios that ex 

ante stochastically dominate their IT counterparts. The procedure follows a linear programming 

(LP) formulation, described in detail in Appendix A. 

We choose from the set  the “best” portfolio according to a given criterion. We try 

several alternative criteria and find broadly consistent results in terms of the composition of this 

portfolio. Most importantly, we demonstrate in the next section that these best OT portfolios 

stochastically dominate their IT counterparts using realized prices as well. As our base case 

criterion we pick the portfolio that maximizes the Sharpe ratio, 

   1 1 1 1( ) / ( )t t t t t t tE S A S S R std S A S      . In robustness tests, we replace the maximization of 

the Sharpe ratio with the maximization of the gain/loss ratio,    1 1( ) / ( )t t t tE A S E A S 

  ; or, 

the maximization of the Sortino ratio,     1 1 1
( ) / ( )

t t t t t
E A S std S A S



  
 ; or, simply choose the 

maximum feasible S . 

We stress that the restriction 
1

0.6
t t

S S S


   is imposed on the construction of the 

portfolios but is not imposed on realized prices. In unreported robustness tests we also consider 

the case where we allow the index to become worthless in one month, by replacing this restriction 

with 
1t

S S

 , and obtain similar results. We relax the lognormality assumption by including extra 

weight in the tails of the distribution to account for empirically observed properties of the index 

returns. We also consider time-varying volatility following well-known daily GARCH processes; 

these are discussed in our robustness tests section. The construction of these portfolios relies on 

information that is available at the beginning of the 28-day (or 14-day or seven-day) period. 

 1
0

t
A S




1t
S S




ˆ( )S
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The search for the potentially mispriced portfolios takes place on a subset of the available 

options within the moneyness range of the options that has already been limited by liquidity 

considerations according to the criteria specified in Section 2. Essentially our choice of portfolios 

incorporates the conditions of the Lemma at every single point of an appropriately defined lower 

range of the support and imposes the maximization of the expected payoff. Specifically, we assume 

a lower support for the index generally independent of the span of a given discrete return space. In 

the last step we select the portfolio corresponding to the value S  that maximizes the Sharpe ratio. 

We carefully distinguish the period of the financial crisis which we define as the twelve 

months after October 2008. In the one-month period before mid-October 2008 the index lost some 

25% of its value which resulted in several unusual opportunities in the options market in the 

following months. 

In the second phase we compare the IT and OT portfolios at the option maturity and 

generate two time series of realized returns. We compare the performance of the IT and OT 

portfolios in several ways. First, we derive bootstrap p-values for a negative mean excess return. 

Second, we apply the Davidson-Duclos (DD, 2013) test for restricted second-order stochastic 

dominance. This test is based on the null hypothesis of non-dominance, as opposed to several other 

tests where the null is dominance and would provide a relatively weak evidence by finding a high 

p-value for the null since by construction they do not reject anything. DD demonstrates that the 

null of non-dominance cannot, in principle, be rejected over the entire joint support for the two 

examined prospects even if it exists in population; therefore, some points in the tails of this joint 

support are removed from the search for the minimal t-stat which forms the basis of the bootstrap 

procedure in the DD test.15 

 

 

 

                                                           
15 The DD test considers a minimal t-stat in the restricted support. If there is no restriction in the left tail, a minimal t-

stat is equal to one by construction. Without any restriction in the right tail, the minimal t-stat in cases like ours will 

usually correspond to the difference in means, whose statistical significance is too strong a condition for SD. See also 

Constantinides, Czerwonko, Jackwerth, and Perrakis (2011), where the application of the DD test in a similar situation 

is described in detail and for evidence that the test is conservative in rejecting a false null. 
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5 Empirical Results on Stochastic Dominance 

In Table 2 we present the results over the whole sample period from 1990.01 to 2013.02 for four 

different portfolio selection criteria: the Sharpe ratio, the gain/loss ratio, the Sortino ratio, and the 

maximization of Ŝ .  is the mean and 
OT IT




is the volatility of the difference of the annualized 

percentage return between the IT and OT portfolios. In the top panel we present results for the 

portfolios constructed 28 days prior to the options’ maturity; out of the 278 dates there are 270 

dates with feasible portfolios. In the middle panel we present results for the portfolios constructed 

14 days prior to the options’ maturity; out of the 278 dates there are 272 dates with feasible 

portfolios. In the bottom panel we present results for the portfolios constructed seven days prior to 

the options’ maturity; out of the 278 dates there are 272 dates with feasible portfolios. Statistical 

tests are performed on the basis of the total number of dates. The p-values for the difference in 

means are derived via bootstrap with 10,000 draws. For the DD test, 10% trimming (deleting 

sequentially lowest outcomes in either return set) in the left tail is uniformly performed while 

similar trimming in the right tail is as shown. The results of the DD tests without trimming in the 

right tail are not shown because they are qualitatively the same as the p-values for the difference 

in means. 

[Table 2 and figure 1 here] 

For the portfolios constructed 28 days prior to the options’ maturity and for all the selection 

criteria, the annualized mean return of the OT portfolio exceeds the mean return of the IT portfolio 

by about half-a-percent. With the exception of the gain/loss ratio criterion, this difference is not 

statistically significant at conventional levels probably because we conservatively restrict the scale 

of the zero-net-cost portfolio. The volatility of the annualized return of the IT portfolio is 16.48% 

and is higher than the volatility of the OT portfolios. In figure 1 we present the difference in returns 

between the OT and IT portfolios as a function of the S&P 500 index return for 28-day and 14-

day options. Consistent with the objective of constructing OT portfolios that stochastically 

dominate the IT portfolios, the difference in returns is positive for low values of the index return 

and negative for high values. 

For the portfolios constructed 14 days prior to the options’ maturity and for all the selection 

criteria, the annualized mean return of the OT portfolio exceeds the mean return of the IT portfolio 
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by well over one percent and this difference is statistically significant at conventional levels for all 

portfolio selection criteria with the exception of the Sharpe ratio. It is especially large and 

significant under the gain/loss ratio and the maximization of Ŝ  criteria. The volatility of the 

annualized return of the IT portfolio is 17.15% and is higher than the corresponding volatility of 

the OT portfolios. This improvement in performance for 14-day options occurs in spite of higher 

proportional transaction costs, with the bid-ask spread at 8.7% on average for ATM options, 

compared to 6.5% for 28-day options for similar average levels for ATM IV for both maturities. 

We look at possible drivers of this difference in trading results in the next section. 

For the portfolios constructed seven days prior to the options’ maturity and for all the 

selection criteria the annualized mean return of the OT portfolio exceeds the mean return of the IT 

portfolio by well over one percent and this difference is statistically significant at conventional 

levels for all portfolio selection criteria. It is especially large and significant under the gain/loss 

ratio and the maximization of the gain/loss ratio. The volatility of the annualized return of the IT 

portfolio is 18.12% and is higher than the corresponding volatility of the OT portfolios. This 

improvement in performance for seven-day options occurs in spite of 9.8% average ATM 

proportional spreads for seven-day options. We look at possible drivers of this difference in trading 

results in the next section. 

In unreported tests we relax the assumption of lognormality used to derive the OT 

portfolios. For the underlying distribution we use an Edgeworth tree as in Rubinstein (1998), with 

the excess kurtosis and skewness set at 0.5 and -0.5 respectively, roughly corresponding to the 

long-term empirical quantities for S&P 500. The increased accuracy in approximating the 

underlying distribution of the index improves, as expected, the results in comparison to the ones 

in Table 2, but the improvements in profitability is limited to about 0.3% per annum in the most 

extreme case of the seven-day options. For these reasons we maintain lognormality as our base 

case. 

The formal tests of stochastic dominance resoundly reject the null hypothesis of non-

dominance for the 28-day, 14-day, and seven-day portfolios and for all portfolio selection criteria 

with the weakest results for 28-day options for which the null is rejected only at 5% significance 

for 5% trimming in the right tail. In the 28-day option portfolios the dominance is achieved by 

keeping the same mean as IT but reducing risk by shifting weight to the low return states, while in 
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most 14-day and seven-day portfolios the mean return significantly increases as well. Note that 

the flexibility in portfolio choice achieved by the approach used in this paper finds dominating 

portfolios for almost all cross-sections. In contrast, Constantinides, Czerwonko, Jackwerth, and 

Perrakis (2011) identify OT dominance in only about one-third to one-half of the sample months. 

We conclude that the 28-day, 14-day, and seven-day OT portfolios stochastically dominate their 

IT counterparts. Furthermore, this conclusion is robust to all portfolio selection criteria. 

These results remain basically unchanged when we drop the restriction on the maximal loss 

and allow the index to become worthless at its lowest support. In unreported results we show that 

the realized returns significantly increase for all decision criteria for 28-day options and become 

significant at the 5% level or better for all but the gain/loss ratio. Exactly the opposite takes place 

for the 14-day and seven-day options, for which the results worsen and become non-significant for 

all but the max S  criterion. The realized returns remain essentially unchanged in terms of the SD 

tests and show OT dominance in all cases. 

An indicator of the mispricing of each option cross-section is the Sharpe ratio of the OT 

portfolio. In panel A of figure 2 we present the time series of the Sharpe ratio of the OT portfolio 

for both the 28- and 14-day options in the case where we maximize the Sharpe ratio. The Sharpe 

ratio is persistent and follows the same patterns for both maturities. The similarities of the two 

graphs are remarkable given that they are derived two weeks apart and suggest that SD 

opportunities in S&P 500 options are persistent. 

Another indicator of the mispricing of each option cross-section is the annualized expected 

gain,  1( )t tE A S 

 . In panel B of figure 2 we present the time series of the expected gain for both 

the 28- and 14-day options in the case where we maximize the Sharpe ratio. The expected gain is 

evidently less persistent and is higher for the shorter maturity portfolios. 

In Table 3 we divide the option portfolios into terciles based on the expected gain, 

. The table shows that the difference in the realized return between the OT and the 

IT portfolios is highest and stochastic dominance is most prevalent when the expected gain is the 

highest. 

[Table 3 and figure 2 here] 

 

 1( )t tE A S 


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6 Relation between Stochastic Dominance and the Smile 

In Tables 4-6 we consider separately the stochastic dominance tests for the low and high terciles 

of a given smile characteristic (ATM IV, left skew, and right skew) for 28-, 14-, and seven-day 

options, respectively. Overall the power of the tests is diminished by the fact that we have only 92 

observations in each tercile instead of 278 observations for the main results in Table 2. 

[Tables 4-6 here] 

For all maturity options, the mean difference of the annualized percentage return between 

the IT and OT portfolios (  ) is significantly higher when the ATM IV is in the high tercile of the 

ATM IV. The formal tests of stochastic dominance resoundly reject the null hypothesis of non-

dominance for all maturity options and for all portfolio selection criteria. We conclude that 

stochastic dominance is prevalent when the ATM IV is high. 

For 28-day options the mean difference of the annualized return between the IT and OT 

portfolios is higher when the left skew is low. For 14-day and seven-day options the mean 

difference of the annualized return between the IT and OT portfolios is high when the left skew is 

low or high with a single exception for the Sharpe ratio for 14-day options when the performance 

is poor when the left skew is high. We conclude that the classification of portfolios according to 

the steepness of the left skew does not provide consistent results. 

For all maturity options the mean difference of the annualized return between the IT and 

OT portfolios is significantly higher when the right skew is low. In the low tercile of the right 

skew, but not in the high tercile, the formal tests of stochastic dominance resoundly reject the null 

hypothesis of non-dominance for the 14-day and seven-day options and for all portfolio selection 

criteria with only somehow weaker results for 28-day options. We conclude that stochastic 

dominance is prevalent when the right skew is low. 

These results motivate our examination of the characteristics of the options that are 

included in the dominating portfolios. We find that most of the trading occurs in call options, 

consistent with the above conclusion that the right skew, but not the left one, influences our results. 

 



18 

 

7 Characteristics of the Dominating Portfolios 

7.1 Characteristics of the options in the zero-net-cost portfolios 

In Table 7 we describe the composition of the zero-net-cost portfolios. The total number of 

contracts in each category is the sum of the absolute values of the number of long and short 

contracts. We present results for the entire available sample period and before, during, and after 

the financial crisis. We present the results for the Sharpe ratio portfolio selection criterion, defined 

in Section 4, since the unreported results for the other criteria are qualitatively similar. 

[Table 7 here] 

For the 28-, 14-, and seven-day options, over the whole sample period and in the subperiod 

before the financial crisis, the total number of call contracts is more than double the number of put 

contracts. In the subperiod after the financial crisis, the total number of call contracts is more than 

double the number of put contracts for 14- and seven-day options but the total number of call 

contracts is about the same as the number of put contracts for 28-day options. 

For the 28-, 14-, and seven-day options, over the whole sample period and in the subperiods 

before and after the financial crisis, the call positions are overwhelmingly short positions. Thus 

the OT investor creates the dominating portfolio by primarily writing calls, consistent with the 

observation that portfolio managers often write covered calls. The put positions are evenly divided 

between long and short positions before the crisis and are primarily short positions after the crisis. 

Thus calls are more overpriced than puts, despite the steep implied volatility skew and consistent 

with the earlier findings in Constantinides, Jackwerth, and Perrakis (2009) and Constantinides, 

Czerwonko, Jackwerth, and Perrakis (2011). 

The 12-month period from 2008.11 to 2009.10 of the financial crisis is different. The total 

number of put positions is double the number of call positions. Furthermore the put positions are 

overwhelmingly short positions. Our interpretation is that, during the crisis, prices overreacted to 

the prospect of a financial disaster and the slope of the skew steepened to the point that it became 

attractive to the OT investor to write overpriced puts rather than calls. 

For the 14-day and seven-day options, we observe a gradual decrease in put trading as the 

maturity gets shorter. This decrease is especially pronounced during the period of the financial 

crisis when we observe the majority of trading in put options for 28 days to maturity, about equal 
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trading in calls and puts for 14 days to maturity, and only a small fraction of trading in put options 

for seven days to maturity. We also observe a gradual increase in short call positions as the maturity 

gets shorter. OT put usage goes down sharply with maturity, especially during the crisis. Since we 

keep the lowest support at 0.6 for all maturities, it is obvious that going down that far is going to 

be much less probable in shorter time, thus resulting in lower-priced protective puts. 

In Table 8 we present the percentage of the months out of the total number of sample 

months in which 0, 1, 2, or 3 types of 28-day options are included in the optimal zero-net-cost 

portfolios. For example, in the first row of the table, no OTM short calls are included in 11.7% of 

the sample months; and OTM short calls with two different strike-to-price ratio are included in 

5.5% of the sample months. ATM calls are included in the category of ITM calls; and ATM puts 

are included in the category of ITM puts. We present results when the selection criterion is the 

Sharpe ratio. We obtain similar results when we use the other selection criteria. 

[Table 8 here] 

Over the whole sample period and in the subperiods before and after the financial crisis, 

most of the calls and puts in the optimal zero-net-cost portfolios are OTM options as opposed to 

ITM options (with ATM options included in the category of ITM options). This is consistent with 

the observation that OTM options are more liquid that ITM options and the volume of trading in 

OTM options is higher than the volume of ITM options. 

Over the whole sample period and in the subperiods before and after the financial crisis, 

the OT investor primarily transfers payoffs from the high market return states to the low market 

return states by writing OTM calls. In most months the OT investor writes only one and at most 

two types of OTM calls. In the subperiod before the financial crisis, second in frequency of options 

included in the optimal zero-net-cost portfolios are long positions in OTM puts and calls. In the 

subperiod after the financial crisis, second in frequency of options included in the optimal zero-

net-cost portfolio are long positions in OTM calls; and long and short positions in OTM puts. Here 

again most often only one type of option in each category is included in the portfolio. Of interest 

is also the fact that long and short positions in OTM puts are approximately equal in size, implying 

that the net OTM put position is hedged at the left tail of the index support, as required for 

stochastic dominance. The put options appear to be aimed primarily at achieving a desirable payoff 

pattern at low and intermediate parts of the support. 
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As we observed earlier, the period of the financial crisis is different. The OT investor 

primarily writes OTM puts. Second in frequency of options included in the optimal zero-net-cost 

portfolio are short ITM and OTM calls and long OTM puts. The long puts, both OTM and ITM, 

combine with the OTM puts to establish the net non-negative position at the left tail. 

Over the whole sample period and in all the subperiods, the option portfolios are 

parsimonious. For example, over the whole sample period, OTM short calls of only one strike-to-

price ratio appear in 82.8% of the sample months but only in 5.5% of the sample months OTM 

short calls with two or more different strike-to-price ratio appear in the option portfolios. The same 

observation applies to all the other categories of options, ITM short calls, OTM long calls, and so 

on. The results for 14-day and seven-day options are similar to the results reported in Table 8 for 

28-day options and are not displayed here. 

In unreported results we allow the OT portfolio to include a long or short position in the 

index, over and above the initial position of one index unit and include it as part of the payoff

 1t
A S


 at option maturity. A priori we do not expect this variant of the program to result in 

additional acquisition of the index since it would increase the left tail risk, contrary to the 

objectives of stochastic dominance; it may, however, potentially increase the attractiveness of 

writing puts.16 This relaxation of our program brings in fact little change in the OT portfolio 

composition. Depending on the portfolio selection criterion, the OT portfolio does include a short 

position in the index at one or two dates in our sample, with these dates corresponding to the period 

of the financial crisis. 

 

7.2 Option characteristics in relation to the IV smile 

In Table 9 we present the characteristics of calls in relation to the ATM IV, left skew, and right 

skew in the 1990.01-2013.02 period. We present results for the Sharpe ratio portfolio selection 

criterion. Left (right) skew is 5% OTM IV (5% ITM IV) net of the ATM IV for a given cross-

section. The total number of contracts in each category is the sum of the absolute values of the 

                                                           
16 In principle an increased quantity of the underlying may increase the attractiveness of writing calls; however, with 

our restriction of at most one call, there is no need to carry more of the underlying to arrive at the stochastically 

dominating payoff. 
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number of long and short contracts. Each tercile for a given smile characteristic corresponds to 92 

observations. 

[Table 9 here] 

In earlier Table 8 we show that most of the calls in the optimal zero-net-cost portfolios are 

short contracts as opposed to long ones. In Table 9 we establish that this conclusion is robust to 

the ATM IV and the size of the left and right skew. The number of short calls is higher when the 

ATM IV is low and/or the right skew is high. Furthermore the number of calls in the OT portfolio, 

both long and short, increases or stays the same in all cases as the maturity gets shorter. 

In Table 10 we present the corresponding characteristics for puts. The number of short and 

long puts is higher when the ATM IV is high and/or the right skew is low. Here the number of puts 

in the OT portfolio varies inversely with the number of calls, decreasing or staying the same in all 

cases for shorter maturities. This indicates that put overpricing is much less pronounced for shorter 

maturities since the probability that there will be a crash till option expiration is correspondingly 

lower. It is probable that the parallel increase in the number of calls noted in Table 9 takes place 

because the constraint in the total number of options in the OT portfolio is now less binding on the 

calls which remain overpriced. 

[Table 10 here] 

Since over the whole sample period and in the subperiods before and after the financial 

crisis the OT investor primarily transfers payoffs from the high market return states to the low 

market return states by writing OTM calls, we address the question whether all types of options 

are needed for profitable OT portfolios. First we allow trades in only short calls but not in long 

calls, long puts, and short puts, without changing the program objectives. Then we allow trades in 

both short and long calls but not in puts. In unreported results we find that with only short calls the 

results are weak; the inclusion of long calls improves the results but even so there are fewer feasible 

portfolios (234, 264, and 260 respectively for 28-, 14- and seven-day options) than in Table 2. 

Hence, trading in long calls and in puts significantly enhances the performance of the OT portfolios 

even though these options are relatively less important than OTM calls in most months. 
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7.3 Are the options in the OT portfolios special? 

Our results beg the question as to whether the options in the optimal portfolios are special. Recall 

that, in the “first pass” columns of Table 1, we show that the average number of separate contracts 

in the option portfolios is low, exceeding four in only one case. This is surprising given the number 

of available options in each cross-section. For 28-day options this number rises from 16.4 in the 

beginning of the sample period to more than four times as much in the later periods. In other words 

the option portfolios contain more than 20% of the available options in the earlier cross-sections 

but a much lower proportion in the later ones. 

We address whether our search for mispriced options exhausts the options that produce 

dominating OT portfolios by removing from each cross-section the options that are included in the 

optimal portfolio—the “first pass” options—and repeating the search with the remaining options 

in the cross-section. Only the cross-sections with at least three calls and puts are admitted in the 

sample. 

In Table 11 we present results for four different portfolio selection criteria: the Sharpe ratio, 

gain/loss ratio, Sortino ratio, and the maximization of S .   is the mean and 
OT IT




 is the 

volatility of the difference of the annualized percentage return between the IT and OT portfolios. 

In the top panel we present results for portfolios constructed 28 days to the option maturity; out of 

the 278 dates there are 265 dates with feasible portfolios. In the middle panel we present results 

for portfolios constructed 14 days to the option maturity; out of the 278 dates there are 265 dates 

with feasible portfolios. In the bottom panel we present results for portfolios constructed seven 

days to the option maturity; out of the 278 dates there are 270 dates with feasible portfolios. The 

volatility of the return of the 28-day, 14-day, and seven-day IT portfolios is 16.48%, 17.15%, and 

18.12%, respectively. Statistical tests are performed on the basis of the total number of dates. The 

p-values for the difference in means are derived via bootstrap with 10,000 draws. For the DD test 

10% trimming (deleting sequentially lowest outcomes in either return set) in the left tail is 

uniformly performed while similar trimming in the right tail is as shown. The results of the DD 

tests without trimming in the right tail are not shown because they are qualitatively the same as 

the p-values for the difference in means. 

[Table 11 here] 
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The results are weaker than the main results in Table 2, yet they remain strong for 14-day 

and seven-day options. The statistical tests reject the null of non-dominance in all cases for these 

two sets of options. However for 28-day options the null of non-dominance is rejected only for 

10% trimming in the right tail with the low overall means indicating little stability in the results. 

 

7.4 Does the OT investor achieve higher returns by simply trading outliers from the IV 

smile? 

A potential criticism of the stochastic dominance of the OT portfolios over the IT portfolios is that 

the OT investor essentially adopts the common trading strategy of buying options that lie below 

the IV smile and writing options that lie above it. Recall that a higher mean return of the OT 

portfolio over the IT portfolio is a necessary but not sufficient condition for stochastic dominance. 

In any case we examine whether the observed higher mean return of the OT portfolios over the IT 

portfolios is attained by the OT investor’s buying options that lie below the IV skew and writing 

options that lie above it. 

In each cross-section we regress the spread midpoint of the 
i

IV  of all options that pass all 

our filters except for the moneyness filter on each option’s moneyness, 
i t

K S , and its squared 

value:    
2

i i t i t i
IV a b K S c K S e    . We run separate regressions for puts and calls. 

In Table 12 we report the means and t-stats of the residuals of the options that enter the 

optimal portfolios in units of the annualized IV in percentage points. For example for short calls 

in the first line of the table, the mean residual 0.09 implies that short calls in the optimal portfolio 

have, on average, annualized IV 0.09% above the skew. For all three maturities we observe similar 

average positive residuals; however the corresponding standardized residuals are slightly below 

zero implying that the main ingredient of the zero net-cost portfolios is on average located almost 

exactly at the smile. For all three maturities short puts have, on average, positive residuals, while 

long calls and puts have, on average, negative residuals. All these three option categories 

independently of maturity have residuals generally higher in magnitude than short calls; however 

as we argued before these categories of options bear less weight in zero-net-cost portfolios than 

short calls. The standardized residuals are standardized each month by the standard deviation of 

the residuals in that month. 
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[Table 12 here] 

For all three maturities the mean values of the residuals are positive for short positions and 

negative for long ones, consistent with the above conjecture. The standardized residuals are 

statistically significant for the long calls and long puts. However we argue below that these results 

are economically insignificant. 

Consider first the short calls in the 28-day option portfolios. These calls have mean residual 

0.09. Assuming that the index price is one, the annualized volatility of the index is 18%, the 

dividend yield is 2%, and the interest rate is 2%, the Vega of a 28-day ATM European call is 

0.0011. That is, the call is overpriced by 0.09 0.0011  0.000099%  0. If the OT investor were to 

write the maximum allowed number of such calls (one call per index unit), the sale of these calls 

would increase the annualized excess return of the OT portfolio by about 

12 0.000099  0.1188%  . 

We perform the corresponding calculations for the long calls, short puts, and long puts: if 

the OT investor were to buy the maximum allowed number of calls (one call per index unit), the 

purchase of these calls would increase the annualized excess return of the OT portfolio by about 

0.2345%; if the OT investor were to buy the maximum allowed number of puts the purchase of 

these puts would increase the annualized excess return of the OT portfolio by about 0.4827%; and 

if the OT investor were to write the maximum allowed number of puts the writing of these puts 

would increase the annualized excess return of the OT portfolio by about 0.2650%. From the first 

row of Table 6 we know that the OT investor writes, on average, 0.60 calls, buys 0.12 calls, writes 

0.17 puts, and buys 0.10 puts. Therefore, the contribution to the higher annual mean return of the 

OT portfolios in buying options that lie below the IV skew and writing options that lie above it is 

about 0.60 0.1188 0.12 0.2345 0.17 0.2620 0.10 0.4827 0.19%.         This 

contribution is small compared to the difference between the mean return of the OT and IT 

portfolios,  , in Table 2. 

Repeating these calculations for 14-day and seven-day options yields the respective 

contributions of 0.21% and 0.29%, which yield even smaller fractions of the overall excess return 

of the OT portfolios. For seven-day options the contribution is 0.79%, which is large but still a 

fraction of the overall excess return of the OT portfolios. We conclude that, even though 
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‘expensive’ or ‘cheap’ options contribute to the excess return of the OT portfolios, they are not the 

main driver of the stochastic dominance results. 

Apart from the fact that our portfolios incorporate realistic trading prices, which are not 

represented by the midpoint prices used in the above exercise, they are chosen strategically in order 

to shift probability weight to the “low” states of the index return and attain superior risk adjusted 

expected returns. A policy of trading outliers of the IV skew, even if it can be achieved at zero 

cost, is unlikely to achieve ex post OT dominance without such features. 

 

8 Is the Excess Return of the Option Portfolio Reward for 

Risk? 

Our stochastic dominance tests are based on the maintained hypothesis that the index return is the 

only priced factor and the stochastic discount factor is monotone decreasing in the index return. 

This maintained hypothesis further implies that the documented excess returns of the OT 

portfolios, adjusted for market risk, are positive. In this section we test whether the excess returns 

of the OT portfolios are rewards for risks that are not taken into account in our theoretical setup. 

We consider the three factors in Fama and French (1993), the factors “Jump”, “Volatility Jump”, 

“Volatility”, and “Liquidity” which have been shown in Constantinides, Jackwerth, and Savov 

(2013) to explain the cross-section of S&P 500 option returns, and the Christoffersen, Heston and 

Jacobs (2013) extension of the Heston and Nandi (2000) stochastic discount factor which is U-

shaped in index returns. 

 

8.1 Construction of option portfolio returns over calendar months 

We construct 28-day option portfolio returns with holding period that approximately coincide with 

calendar months.17 At the beginning of a month we construct the OT options portfolio by buying 

                                                           
17 For our earlier results we construct the OT option portfolios of 28-day options by buying or writing the options 

when they are 28 days to maturity which is at the end of the third week of the month and holding them till expiration 

which is at the end of the third week of the following month. Thus the holding period of 28-day options does not 

coincide with a calendar month. We also construct the OT option portfolios of 21-, 14-, and seven-day options in a 

similar fashion. The OT option portfolios of 21- and 14-day options may or may not expire within the same calendar 



26 

 

and writing options that were originally issued as 28-day options. One, two, and three weeks later 

we close out our positions (or, exercise them if them if they expire and are in the money) and 

construct a new OT options portfolio by buying and writing options that were originally issued as 

28-day options. The one-month excess return of the OT options portfolio, 
,OT t

r , is the sum of the 

cash flows of these trades divided by the index value at the end of the previous month. 

The OT portfolios are chosen in the presence of transaction costs as in the previous sections 

and then the bid or ask price at which an option is written or purchased is replaced by the 

corresponding bid-ask midpoint, as is commonly done in this literature. Note, however, that unlike 

earlier studies we do not assume that the put-call parity holds in order not to interfere with option 

market data. Since the short option positions now have higher prices and the long positions have 

lower prices the resulting realized excess OT payoffs are higher by about one-half the bid-ask 

spread. 

 

8.2 Factor-adjusted option portfolio returns 

For the first test we adjust the excess returns of the OT options portfolio with the three factors in 

Fama and French (1993) by running the time-series regression 

, , , ,OT t M M t SMB SMB t HML HML t t
r r r r         , 

where 
, , , ,
, , ,  and 

OT t M t SMB t HML t
r r r r are the excess returns of the OT, market, small-minus-big, and 

high book-to-market minus low book-to-market portfolios in month t; and   is the risk-adjusted 

average excess return of the OT portfolio. Table 13 shows that the risk-adjusted average excess 

return of the OT portfolio is positive and highly significant partly because the factor loadings on 

the SMB and HML factors are small and marginally significant. We conclude that the three-factor 

model in Fama and French (1993) does not explain away the average excess return of the OT 

portfolio. 

[Table 13 here] 

                                                           
month but the seven-day options expire within the same calendar month. For our earlier results it is immaterial that 

the holding period does not coincide with a calendar month. 
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For the second set of test we adjust the excess returns of the OT options portfolio with the 

market and, each one in turn, the factors “Jump”, “Volatility Jump”, “Volatility”, and “Liquidity” 

which have been shown in Constantinides, Jackwerth, and Savov (2013) to explain the cross-

section of S&P 500 option returns. In the first stage we estimate the factor loading 
f

  from the 

time-series regression 
, ,OT t M M t f t t

r r f       , where 
, ,

 and 
OT t M t

r r are the excess returns of 

the OT and market portfolios and 
t

f  is the realization of the factor “Jump”, “Volatility Jump”, 

“Volatility”, or “Liquidity”. The risk prices of these factors, , ,  , and 
Jump VolJump Vol Liq

    , are 

estimated in Constantinides, Jackwerth, and Savov (2013) over the same time period either from 

the universe of equities or from the universe of index options. In the second stage we estimate the 

risk-adjusted average excess portfolio return, , ,OT t M M t f f
r r    . Table 14 shows that the risk-

adjusted average excess return of the OT portfolios is positive and highly significant in all cases. 

We conclude that the Constantinides, Jackwerth, and Savov (2013) model does not explain away 

the average excess return of the OT portfolios. 

[Table 14 here] 

 

8.3 Option portfolio returns adjusted for risk and valued with the Christoffersen, Heston, 

and Jacobs (2013) stochastic discount factor 

Jackwerth (2000) is the first to introduce a non-monotonic stochastic discount factor to explain 

option prices. Non-monotonicity under the form of a U-shaped stochastic discount factor is, in 

fact, the explanation given for the anomalous in-sample results for individual options in 

Constantinides, Jackwerth, and Perrakis (2009) by Bakshi, Madan, and Panayotov (2010), Beare 

(2011), and Beare and Schmidt (2016). A U-shaped stochastic discount factor captures an 

important empirical observation for extreme positive index returns. Such returns occur when the 

overall volatility is very high in situations after a market crash, as it happened for about a year 

following the recent financial crisis. 

We examine whether the U-shaped stochastic discount factor is capable of correctly pricing 

the identified OT portfolios. We apply the Christoffersen, Heston, and Jacobs (2013) extension of 

the Heston and Nandi (2000) stochastic discount factor which is U-shaped in index returns and 
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may potentially explain away the average excess return of the OT portfolio. This is the only such 

model available in the literature containing closed-form expressions for both options and the 

stochastic discount factor. We present the essential features of this model and defer technical 

details to Appendix B. The key feature of this model is that only one parameter,  , is defined by 

option market data while the remaining parameters are extracted from the underlying market. 

We start by estimating the parameters of the P distribution with GARCH on daily returns. 

Since the U-shaped stochastic discount factor depends on the entire volatility path from the 

beginning of the month till the option expiration, we filter out the realized volatilities from the 

realized index returns, given that they both depend on the same random factor. We then determine 

from the closed form expressions and the observed option prices the extra volatility pricing 

parameter   needed to price the entire universe of options. This parameter is chosen by 

maximizing the likelihood for our data. The results for the smaller value of this parameter found 

in Christoffersen, Heston, and Jacobs (2013) are qualitatively similar. To compute the realized 

stochastic discount factor at time t, 
t

SDF , we multiply the realized volatility by  . 

Table 15 presents the average risk-adjusted excess return of the OT portfolios, ,
,

t OT t
SDF r

where 
,OT t

r  is the realization of the excess return of the OT portfolios at time t. The risk-adjusted 

excess returns on OT portfolios assume extreme positive values due to the extreme variation in the 

SDF for the realized paths of conditional volatility, which variation results in all t-statistics in the 

proximity of one. Moreover the stochastic discount factor is unable to correctly price the index 

whose risk-adjusted returns assume extreme negative values. We conclude that the Christoffersen, 

Heston, and Jacobs (2013) stochastic discount factor does not explain away the average excess 

return of the OT portfolios. 

[Table 15 here] 

Finally we examine whether the observed OT option prices are consistent with the U-

shaped stochastic discount factor as extracted from the entire option market data. For this it suffices 

to compare the predicted model prices with the realized ones in an exercise that parallels the one 

conducted by Christoffersen, Heston, and Jacobs (2013, Table 2 and pp. 1992-1994) for a policy 
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of shorting straddles which is found to be highly profitable in several studies.18 In that exercise the 

authors consider short straddles worth 10% of the underlying index and conclude that the straddle 

returns at model prices are consistent with those observed in the market since they are within the 

95% bootstrapped confidence interval around the market returns. 

Table 16 presents the realized average returns at market and model prices for the OT 

portfolios and straddles as well as the 95% confidence intervals around the market returns 

bootstrapped as in Christoffersen, Heston, and Jacobs (2013, Table 2). Since these returns consist 

of the initial portfolio price and the realized payoffs which are identical in both cases, the 

difference between columns 2 and 3 in all panels comes solely from the market and model prices. 

Recall also that the model prices are the expected payoffs of the options in the portfolios, evaluated 

by the risk neutral Q  distribution of returns and volatilities and the same value of the parameter   

as in Table 15. To preserve comparability with the Christoffersen, Heston, and Jacobs (2013, Table 

2) results we normalize the OT portfolios to yield the same initial premium as the 10% of the 

underlying index collected via the short straddles at each date, while the portfolio excess returns 

are derived relative to one unit of index as before. 

[Table 16 here] 

The highly significant straddle returns in our table can be compared to those of 

Christoffersen, Heston, and Jacobs (2013, p. 1982, Table 2) only for the 28-day options for which 

the Christoffersen, Heston, and Jacobs (2013) results are more than twice as high, reflecting the 

post-crisis years in our data. By contrast their model returns at 1.82% are of the same order of 

magnitude as ours in column 3 of Panel B. On the other hand it is clear that for the same collected 

premium the optimal OT portfolios yield higher returns but not necessarily lower p-values than 

the corresponding straddles. Similarly in Panel C of the table we observe that the difference in 

means between OT portfolios and straddles is always significant at 10% or better. 

Most important of all, however, is the fact that the model prices lie far above the 95% 

confidence interval around the market price in the second column for both OT portfolios and 

straddles as well as their differences, in sharp contrast to the consistency between market and 

                                                           
18 The literature on the anomalous straddle returns includes Broadie, Chernov, and Johannes (2009), Christoffersen, 

Heston, and Jacobs (2013), Coval and Shumway (2001), Driessen and Maenhout (2007), and Santa Clara and 

Saretto (2007). 
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model prices observed in the earlier study for the 28-day options. This inconsistency holds for the 

28-, 21- and 14-day OT portfolios and straddles, and only for the highly volatile seven-day 

maturity options do the OT portfolio and straddle confidence intervals encompass the model 

prices. We conclude that the observed option prices in the OT portfolios are not consistent with 

the Christoffersen, Heston, and Jacobs (2013) U-shaped stochastic discount factor.19 

 

9 Robustness Tests 

9.1 Mispriced OT portfolios for the CAC and DAX indices 

In Table 17 we show the results for the mispriced 28-, 14-, and seven-day OT portfolios extracted 

from options on the CAC and DAX indices, together with the contemporaneous sample of January 

2006 to February 2013 S&P 500 options while for weekly options the sample starts in June 2006. 

Weekly options, i.e. S&P 500 and DAX options which are listed about a week before the maturity 

on Fridays other than the third Friday of a given month, are considered separately. We use the 

Sharpe ratio criterion and show all the information presented for that criterion in Table 2, together 

with the sample sizes in each case and the dates where feasible dominating OT portfolios could be 

extracted. 

[Table 17 here] 

The table shows that the results for all indices are qualitatively similar although the 

feasibility is somewhat reduced for the two European indices from the impressive 272 out of 278 

(approximately 98%) in the entire sample of the S&P 500 index, which is virtually the same in the 

shorter sample. Still the feasibility is more than 90% in all but one of the six cases in which it is 

82%. The strong maturity effect on in-sample OT profitability is clear for all three indices, with 

the seven-day options recording an impressive excess return of over 5% everywhere, much higher 

than for the entire S&P 500 sample in Table 2. The similarity of the results for all three indices 

extends to the out-of-sample DD tests which are not significant for the 28-day maturity OT 

portfolios but strongly significant for the other two maturities. Clearly the size of the time series 

                                                           
19 In unreported results we reverse the exercise and show that the value of  that prices correctly the OT portfolios 

generates highly biased model prices for the entire cross section. 
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sample accounts for the difference between the first panel of Table 2 and the last panel of Table 

16. We conclude that the mispricing effect of OT portfolios dominating the index extends to the 

two other indices that are examined. 

The results for weekly options for S&P 500 and DAX are similar to each other but distinct 

from the results for seven-day options. Weekly options exhibit both lower profitability and lower 

feasibility in relation to their seven-day counterparts, i.e. the profitability decreases from over 5% 

to about 2% per annum while the feasibility decreases from well over 90% to about 75% for S&P 

500 and to 50% for DAX. These differences indicate that demand and supply pressure is at least 

partly responsible for mispricing while we note that the third-Friday options trade for at least three 

months. 

 

9.2 Alternative volatility projections for the return distribution 

Volatility projections are a key element of our stochastic dominance tests. Our base case method 

is forward-looking, in the sense that it uses the VIX, which is corrected on the basis of the observed 

average error for its well-known upward bias. Here we also consider alternative projection 

methods, based on two GARCH models, the Glosten, Jagannathan and Runkle (GJR, 1993) and 

the exponential EGARCH model of Nelson (1991), as well as an ad hoc random walk volatility 

model. 

The following expressions indicate the assumed dynamics under the two daily GARCH 

models with t  and 1t   indicating two successive days and 
t

h the variance at t . 

GJR: 

21

1 1 1 1 1 1 1 1
ln ,   ( ) ,  0 if  0,   1 if  0t

t t t t t t t t t t

t

S
h h I h I I

S
        

       
           

and 

EGARCH: 

1

1 1 1 1 1
ln ,   ln( ) ( ) ln( )t

t t t t t t t

t

S
h h E h

S
       

    
       , 
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where 
1t




 is standard normal variate conditional on the information set available at time t. For the GJR 

model the following recursive expression allows the estimation of total return volatility over the 

life of the option: 
1

( )
2

t t
h h


  


    . 

For each GARCH application we estimate the model coefficients over a rolling window of 

3,800 daily observations, corresponding to approximately 15 years of data. For the GJR model we 

project the volatility by summing the forecasted conditional variances given the estimated 

coefficients and the above recursive expression. For the EGARCH model we sum the forecasted 

conditional variances evaluated by simulating 100,000 return paths. Random walk projected 

volatility is simply the sample volatility realized just before each trading date over the same 

number of days as the option maturity. Table 18 presents the results for the Sharpe ratio criterion 

for 28-, 14- and seven- day maturities, which should to be compared to our base case adjusted VIX 

method in Table 2. 

[Table 18 here] 

We find evidence for mispricing in all panels which is confirmed ex post at all maturities 

for either the GJR or EGARCH forecast methods, with somewhat lower profitability compared to 

our base case except for the seven-day options under EGARCH forecasts. The results are generally 

weaker for the random walk case, insofar as they exhibit no evidence of stochastic dominance for 

28-day options either in-sample or ex post. All three models, especially the two GARCH ones, 

also yield a significantly lower number of feasible dates than our base case. Similar results are also 

observed in Constantinides, Czerwonko, Jackwerth, and Perrakis (2011), in which the “best” 

volatility projection method is the observed ATM IV, which is virtually identical to VIX, again 

adjusted by the mean prediction error; it dominates both a GARCH model and a random walk 

based on a 90-day moving window. 

In unreported results we further analyze the relationship between the quality of the 

forecasts and the stochastic dominance results by estimating basic statistics such as the bias and 

the variability of the forecast error 
P

 defined as tP tPRED tOBS
h h   , predicted minus observed 

volatility. We observe that VIX-adjusted is at par with both GARCH models with respect to the 

forecast quality, but both GARCH models produce positive biases of similar magnitude, which are 

similar to the negative bias for the adjusted VIX. The random walk produces a bias of very low 
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magnitude, but its forecast error dispersion measures are clearly inferior to the other three methods. 

These results explain the lower number of feasible dates for the two GARCH methods, since the 

net short position of our OT portfolios tends to produce lower in-sample expected payoffs when 

the predicted volatility is high. We conclude that the mispricing of the OT portfolios exists in all 

volatility prediction modes and that the adjusted VIX method is the most efficient of all candidate 

methods in identifying them. 

 

10 Concluding Remarks 

We show that at least some S&P 500 options are significantly mispriced relative to the index. A 

utility-maximizing investor trading at 28, or 14, or seven-day intervals in the S&P 500 index and 

a risk-free bond, subject to proportional transaction costs, stochastically dominates her portfolio 

by overlaying a zero-net-cost portfolio of European S&P 500 options bought at their ask price and 

written at their bid price in almost every month from 1990 to 2013. Dominance is prevalent when 

the ATM IV is high and/or the right skew is low. The portfolios include about twice the number 

of calls than puts and the call positions are overwhelmingly short positions, consistent with the 

practice of writing covered calls. This contradicts the common belief that puts but not calls are 

overvalued. Similar results obtain with options on the CAC and DAX indices. The mispricing is 

not explained by priced factors or the non-monotonicity of the stochastic discount factor. 

There are a number of possible reasons as to why this mispricing persists. Index funds and 

ETFs minimize tracking error and the inclusion of options in their portfolios would likely increase 

tracking error. Passive mutual funds may find it difficult to explain to their investors the benefits 

of stochastic dominance. Other active mutual funds and hedge funds may not hold the market 

portfolio because they have different priorities such as picking winners or enhancing their portfolio 

returns by skewing their holdings towards small-capitalization, value, or high profitability stocks. 

Finally option traders’ and intermediaries’ credit constraints and funding liquidity may distort the 

prices of index options. In any case it remains to be seen whether this paper’s demonstration of the 

large OT excess returns will alter investors’ behavior and eliminate the documented anomaly. 
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Appendix A: The numerical algorithm 

We search for optimal OT portfolios by solving an LP under a set of constraints. Let 

0,   1, ..., 2
i

w i n   denote the number of options 
i

C  (both calls and puts) entering into the OT 

portfolio from the n available options in a given cross section, ordered in ascending strike price. 

We treat long and short option positions as separate options, thus allowing us to restrict linearly 

the total option position. Let also denote the initial value of the OT portfolio. We have: 

2

1

0 1
n

i
w  ,    

2

1

n

i i
w C  .     (A.1) 

Then, if 
1

( )
i t

g S


denotes the payoff of the ith option, the total payoff at option expiration is equal 

to 
2
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Observe that  1t
A S


 is piecewise linear, with a constant slope

1t

A

S





 within any interval

1
[ , )

j j
K K


  of two successive strike prices ,   1, ...,

j
K j n  of the available strike prices in the 

option cross section. We add the fundamental stochastic dominance constraints 
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1
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 for 
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S S

 ; 

1
[ ( )] 0.

t t
E A S


  (A.3) 

These constraints need only be verified at the strike prices to the left of S , while at the right we 

simplify the search by adding the constraint that the payoff be non-increasing. Last, we find the 

OT portfolio by solving the following LP. 

1
ˆ[ ( )]  given 

iw t t
Max E A S S

 ,     (A.4) 
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subject to (A.1)-(A.3). If this program is feasible then the set of optimal weights and corresponding 

options * *
{ 0, }

i i
w C  belongs to the ex ante stochastically dominant set ˆ( )S of OT portfolios.20 

In our search we vary S  till the LP becomes infeasible for some maximum value of

1
ˆ

t
S S


 , arbitrarily restricted to 1.15

t
S . We restrict our search to the segment [ ,  1.15 ]

t t
S S . Once 

this maximum feasible value for S is found we partition the segment [ ,  ]
t

S S  and maximize the 

excess return to OT for each value of this partition to find the complete set ˆ( )S . Finally the 

optimal portfolio is defined as the one for which a given selection criterion reaches its supremum. 

 

Appendix B: The Christoffersen, Heston, and Jacobs (CHJ, 2013) extension of the Heston 

and Nandi (2000) GARCH process 

We modify our notation by denoting the option maturity time by T instead of 1t   and estimate a 

GARCH model, the physical or P -distribution of daily index return data over a time period that 

covers the entire data set and includes all option maturities. The risk-neutral or Q -distribution is 

found from the stochastic discount factor that transforms the parameters of the physical distribution 

and includes parameters reflecting investor preferences with respect to return and volatility. The 

asset dynamics are given by 
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   (B.1) 

where T  denotes the upper range of the return data. 

Since the conditional density of the daily GARCH returns is normal, the log-likelihood 

function is21 
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20 Since the LP has a trivial solution of all zero weights we constrain the sum of weights in the first constraint of (A.1) 

to be above some low threshold, 10-4 in our applications. 
21 See CHJ (2013, p. 1986). 
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The corresponding risk neutral process has the same form as (B.1) but has instantaneous 

expected return equal to r and a volatility parameter set { *, *, *, *}
Q

     , with parameters 

transformed via the stochastic discount factor, which has the form22 

1 1
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The stochastic discount factor parameters  , , ,    are linked to the P -distribution set 
P

  and 

to each other by the following relations: 
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 (B.4) 

Given the parameter values 
P

 , the stochastic discount factor has exactly one extra 

parameter, , since the other three are given by (B.4) once   is given. This parameter accounts 

for the U-shaped stochastic discount factor if 0  , a requirement for the stochastic discount factor 

to potentially account for our OT results.23 The set 
Q

 is given by the following system: 
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       

  
  

        

   (B.5) 

This system yields a unique set 
Q

 consistent with the P -distribution set 
P


 
and the 

parameter . In turn, given this
Q

 the OT portfolio model value can be easily found from the 

option pricing expressions in CHJ (2013, Appendix D) for each one of the four maturities [ , ]
i

T ,

                                                           
22 For a single GARCH period the logarithm of the stochastic discount factor can be expressed as a quadratic 

function of the random stock return only; see CHJ (2013, Corollary 2, p. 1970). Unfortunately no such closed form 

expression exists for maturities greater than one day. 
23 See Corollary 3 of Christoffersen, Heston and Jacobs (2013, p. 1970). 
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1, 2, 3, 4i  of 28-, 21-, 14- and seven-day options, respectively. We estimate  by maximizing the 

log-likelihood for all options defined as24 

 
2

2

2

1

1
log ,

2

N
Q i

e

i e

e
logL s

s

 
   

 
      (B.6) 

where   /
Mod Mkt Mkt

i
e IV IV IV  and in place of 2

e
s its sample analog is used, 2 2

1

1ˆ
N

e iiN
s e


  . 

The parameter set { , , , , }
P

       of the P  distribution contains the risk premium 

parameter   and four volatility parameters and is common to the four maturities 

[ , ],   28, 21,14,  and 7 for 1, 2, 3, 4
i i

t T T t i   , respectively. As in CHJ, it is estimated by filtering 

daily index returns for a time period bracketing the option data set on both sides. We use return 

data over the 1984 to 2014 period which contains the option data and apply the sequential 

likelihood estimation of Broadie, Chernov, and Johannes (2007), starting from the returns and then 

proceeding to the option market for any additional parameters. Maximizing the log-likelihood 

function P
logL given in relation (B.2) we find the -distribution parameter set 

P
 :   = 0,   = 

4.1931x10-6,   = 0.8467,   = 165.17,   = 2.8161, and P
logL = 32584.9.25 

We then estimate   and corresponding Q -distribution as in CHJ (2013) or, indeed, as in 

most, if not all asset pricing models, by using the entire cross-section of available option prices for 

the four maturities under consideration.26 Specifically, put-call parity is imposed for every option 

in the cross-section, implying that it no longer matters whether puts or calls are used for the 

estimation, with OTM calls and puts in each cross-section. The likelihood function Q
logL given by 

(B.6) is then evaluated as a function of  and its maximum, 84, 704
Q

logL  , is found at

*
58, 933   .27 This value is significantly higher than the value 32,839  implied by the 

results of Table 5 in CHJ (2013, p. 1992), reflecting the different maturities and the different span 

                                                           
24 Expression (B.6) is virtually identical to expression (24) of CHJ (2013, p. 1986), with the difference that the 

numerator of the error
i

e is the difference in actual prices rather than their IV’s. 

25 These correspond to a higher return premium and volatility than the corresponding results in CHJ (2013, Table 5), 

most probably due to our much longer return data set. 
26 Note that there are significantly fewer maturities in these estimations that were used by CHJ (2013, p. 1975), since 

the latter included all available maturities between two weeks and one year. 
27 Unreported results in our online appendix show that

Q
logL is a parabolic function of  , first increasing and then 

decreasing after reaching
*

 . 



P



38 

 

of the data in our sample.28 Our corresponding Q -distribution parameters are * 1
(1 2 )


 = 1.9771, 

  = 0,   = 1.6391x10-5,   = 0.8467, and   = 85.21. 

The stochastic discount factor is equal to the stochastic discount factor /
T t

M M , with the 

parameters given by (B.4), the above estimates of the parameter set
P

 , the value *
  as above, 

and the implied realized volatility path
1 1

( , ..., )
t T

h h
 

 extracted from the observed daily index 

returns (B.1) and the corresponding observed errors

 . If 

iT
N denotes the number of feasible cross-

sections for the corresponding maturity Ti = 28, 21, 14, and seven days, the average risk-adjusted 

excess return ,t OT t
SDF r of the OT portfolio in Table 15 is given by 

, 1 1 ,

1

1
( , ..., )

Ti

i

t N

T

t OT t t T OT t

tT t

M
SDF r h h r

N M



 



   .    (B.7) 

As for the returns in Table 16 at model prices for both OT portfolios and straddles, the 

initial values of the portfolios are estimated as in CHJ (2013, Appendix D), with the above Q  

distribution parameter set. 

 

  

                                                           
28 CHJ (2013, p. 1975) included all available maturities between two weeks and one year. 
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Table 1: Average Number of Filtered Option Contracts 

The table reports averages of the number of calls and puts in cross-sections and averages of the number of options 

entering zero net-cost portfolios. First pass options are options selected when all filtered options are available; second 

pass options are those selected when the first pass options are discarded from the opportunity set. 

 

Period Months 
Average # 

of Calls 

Average # 

of Calls in 

1st-Pass 

Portfolios 

Average # 

of Calls in 

2nd-Pass 

Portfolios 

Average # 

of Puts 

Average # 

of Puts in 

1st-Pass 

Portfolios 

Average # 

of Puts in 

2nd-Pass 

Portfolios 

28-Day Options 

1990.01-2000.12 132 7.1 2.1 1.7 9.3 1.5 1.7 

2001.01-2004.06 42 12.7 2.6 2.1 18.8 1.0 0.8 

2004.07-2013.02 102 21.8 2.0 2.0 44.6 2.1 1.8 

1990.01-2013.02 278 17.7 2.0 2.0 34.1 1.8 1.6 

14-Day Options 

1990.01-2000.12 132 6.2 2.0 1.6 8.2 1.5 1.7 

2001.01-2004.06 42 10.9 2.2 2.1 16.9 1.1 1.6 

2004.07-2013.02 102 21.0 2.2 2.0 37.2 1.6 1.7 

1990.01-2013.02 278 16.9 2.1 1.9 29.0 1.6 1.7 

7-Day Options 

1990.01-2000.12 132 5.5 1.8 1.7 7.2 1.1 1.9 

2001.01-2004.06 42 9.6 1.9 1.7 14.4 0.8 1.6 

2004.07-2013.02 102 20.0 2.3 2.1 32.7 1.1 1.4 

1990.01-2013.02 132278 15.8 2.1 2.0 25.2 1.1 1.5 
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Table 2: Portfolio Returns and Stochastic Dominance Tests, 1990.01-2013.02 

The table presents results for four different portfolio selection criteria: the Sharpe ratio, gain/loss ratio, Sortino ratio, 

and the maximization of Ŝ .   is the mean and 
OT IT




is the volatility of the difference of the annualized percentage 

return between the IT and OT portfolios. In the top panel, we present results for portfolios constructed 28 days to the 

option maturity; out of the 278 dates there are 272 dates with feasible portfolios. In the middle panel, we present 

results for portfolios constructed 14 days to the option maturity; out of the 278 dates there are 270 dates with feasible 

portfolios. In the bottom panel, we present results for portfolios constructed seven days to the option maturity; out of 

the 278 dates there are 270 dates with feasible portfolios. The volatility of the return of the 28-day, 14-day and seven-

day IT portfolios is 16.48%, 17.15%, and 18.12%, respectively. Statistical test are performed on the basis of the total 

number of dates. The p-values for the difference in means are derived under via bootstrap with 10,000 draws. For the 

DD test, 10% trimming (deleting sequentially lowest outcomes in either return set) in the left tail is uniformly 

performed while similar trimming in the right tail is as shown. The results of the DD tests without trimming in the 

right tail are not shown because they are qualitatively the same as the p-values for the difference in means. 

 

Portfolio 

selection 

criterion 

  p-value for 
0   OT

  
OT IT




 
DD test p-value 

5% trim 10% trim 

28-Day Options 

Sharpe ratio 0.50 0.112 15.89 1.97 0.039 0 

Gain/loss ratio 0.92 0.029 15.81 2.19 0.008 0 

Sortino ratio 0.45 0.128 15.90 1.97 0.045 0 

ˆmax S  0.66 0.057 15.92 1.89 0.008 0 

14-Day Options 

Sharpe ratio 2.07 0.062 15.68 3.99 0 0 

Gain/loss ratio 2.55 0.026 15.64 3.79 0 0 

Sortino ratio 1.82 0.041 15.71 3.88 0 0 

ˆmax S  2.15 0.051 15.76 3.73 0 0 

7-Day Options 

Sharpe ratio 1.90 0.062 17.43 2.79 0 0 

Gain/loss ratio 2.72 0.008 17.36 2.49 0 0 

Sortino ratio 2.24 0.038 17.45 2.82 0 0 

ˆmax S  2.22 0.007 17.61 2.06 0 0 
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Table 3: Relation between Stochastic Dominance and the Violation Size  1( )t tE A S 

 , 

1990.01-2013.02 

The table present results when the portfolio selection criterion is the maximization of the Sharpe ratio.  is the mean 

and is the volatility of the difference of the annualized percentage return between the IT and OT portfolios. 

Each tercile for the violation size corresponds to 92 observations. The p-values for the difference in means are derived 

via bootstrap with 10,000 draws. For the DD test, 10% trimming (deleting sequentially lowest outcomes in either 

return set) in the left and right tail is uniformly performed. Results for 5% trimming in the right tail are not shown 

since they are not qualitatively different than the results for 10% trimming on display. 

 

Variable 
Lowest Tercile  Highest Tercile 

28-day 14-day 7-day  28-day 14-day 7-day 

μ -0.12 0.11 0.23  1.59 4.69 7.75 

p-value for μ ≤ 0 0.798 0 0  0.109 0.019 0.004 

OT
  15.03 10.35 13.75  16.78 19.23 20.34 

IT
  14.94 10.38 13.80  15.29 16.79 18.04 

OT IT



 0.39 0.14 0.13  3.27 4.50 4.32 

DD test p-value 1 0.070 0.058  0 0 0 

 



OT IT



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Table 4: Relation between Stochastic Dominance and the Smile for 28-Day Option 

Portfolios, 1990.01-2013.02 

The portfolios are constructed 28 days prior to the options’ maturity. We present results for four different portfolio 

selection criteria: the Sharpe ratio, gain/loss ratio, Sortino ratio, and the maximization of ˆmax S .   is the mean of 

the difference of the annualized percentage return between the IT and OT portfolios. Left (right) skew is 5% OTM IV 

(5% ITM IV) net of the ATM IV for a given cross-section. Each tercile for a given smile characteristic corresponds 

to 92 observations. The p-values for the difference in means are derived via bootstrap with 10,000 draws. For the DD 

test, 10% trimming (deleting sequentially lowest outcomes in either return set) in the left and right tail is uniformly 

performed. Results for 5% trimming in the right tail are not shown since they are not qualitatively different than the 

results for 10% trimming on display. 

 

 Lowest Tercile  Highest Tercile 

Portfolio 

selection 

criterion 

μ 
p-value 

μ ≤ 0 

DD test 

p-value 
 μ 

p-value 

μ ≤ 0 

DD test 

p-value 

ATM IV 

Sharpe ratio -0.22 0.666 1  0.91 0.149 0 

Gain/loss ratio 0.26 0.246 0.347  1.65 0.059 0 

Sortino ratio -0.41 0.806 1  1.02 0.134 0 

ˆmax S  0.01 0.486 0.587  1.17 0.109 0 

Left Skew 

Sharpe ratio 0.99 0.119 0.027  -0.47 0.725 1 

Gain/loss ratio 1.62 0.036 0.009  -0.29 0.649 1 

Sortino ratio 1.04 0.109 0.028  -0.57 0.766 1 

ˆmax S  1.24 0.070 0.016  -0.48 0.748 1 

Right Skew 

Sharpe ratio 0.58 0.192 0.043  -0.41 0.730 1 

Gain/loss ratio 1.18 0.095 0.057  0.41 0.264 0.360 

Sortino ratio 0.68 0.148 0.032  -0.59 0.794 1 

ˆmax S  0.84 0.100 0.006  0.05 0.430 0.444 
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Table 5: Relation between Stochastic Dominance and the Smile for 14-Day Option 

Portfolios, 1990.01-2013.02 

The portfolios are constructed 14 days prior to the options’ maturity. We present results for four different portfolio 

selection criteria: the Sharpe ratio, gain/loss ratio, Sortino ratio, and the maximization of ˆmax S .   is the mean of 

the difference of the annualized percentage return between the IT and OT portfolios. Left (right) skew is 5% OTM IV 

(5% ITM IV) net of the ATM IV for a given cross-section. Each tercile for a given smile characteristic corresponds 

to 92 observations. The p-values for the difference in means are derived via bootstrap with 10,000 draws. For the DD 

test, 10% trimming (deleting sequentially lowest outcomes in either return set) in the left and right tail is uniformly 

performed. Results for 5% trimming in the right tail are not shown since they are not qualitatively different than the 

results for 10% trimming on display. 

 

 Lowest Tercile  Highest Tercile 

Portfolio 

selection 

criterion 

μ 
p-value 

μ ≤ 0 

DD test 

p-value 
 μ 

p-value 

μ ≤ 0 

DD test 

p-value 

ATM IV 

Sharpe ratio 0.01 0.486 0.356  1.17 0.109 0.003 

Gain/loss ratio 0.46 0.324 0.208  4.19 0.081 0.001 

Sortino ratio 0.89 0.096 0.107  4.55 0.069 0 

ˆmax S  0.03 0.453 0.327  4.06 0.085 0 

Left Skew 

Sharpe ratio 1.24 0.070 0.016  -0.48 0.748 1 

Gain/loss ratio 2.38 0.195 0.054  3.76 0.035 0.024 

Sortino ratio 3.22 0.125 0.040  4.57 0.013 0.032 

ˆmax S  1.94 0.221 0.052  3.80 0.032 0.026 

Right Skew 

Sharpe ratio 0.84 0.100 0.006  0.05 0.430 0.144 

Gain/loss ratio 4.79 0.007 0  -0.21 0.544 1 

Sortino ratio 5.34 0.004 0.006  -0.01 0.465 1 

ˆmax S  4.65 0.010 0  -0.61 0.666 1 
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Table 6: Relation between Stochastic Dominance and the Smile for Seven-Day Option 

Portfolios, 1990.01-2013.02 

The portfolios are constructed seven days prior to the options’ maturity. We present results for four different portfolio 

selection criteria: the Sharpe ratio, gain/loss ratio, Sortino ratio, and the maximization of ˆmax S .   is the mean of 

the difference of the annualized percentage return between the IT and OT portfolios. Left (right) skew is 5% OTM IV 

(5% ITM IV) net of the ATM IV for a given cross-section. Each tercile for a given smile characteristic corresponds 

to 92 observations. The p-values for the difference in means are derived via bootstrap with 10,000 draws. For the DD 

test, 10% trimming (deleting sequentially lowest outcomes in either return set) in the left and right tail is uniformly 

performed. Results for 5% trimming in the right tail are not shown since they are not qualitatively different than the 

results for 10% trimming on display. 

 

 Lowest Tercile  Highest Tercile 

Portfolio 

selection 

criterion 

μ 
p-value 

μ ≤ 0 

DD test 

p-value 
 μ 

p-value 

μ ≤ 0 

DD test 

p-value 

ATM IV 

Sharpe ratio -1.33 0.715 1  3.97 0.033 0.001 

Gain/loss ratio 0.79 0.176 0.154  4.77 0.033 0 

Sortino ratio -0.87 0.627 1  4.27 0.027 0.001 

ˆmax S  0.61 0.194 0.075  4.31 0.026 0.001 

Left Skew 

Sharpe ratio 1.68 0.239 0.296  1.79 0.233 0.184 

Gain/loss ratio 2.85 0.117 0.063  3.43 0.013 0 

Sortino ratio 2.00 0.208 0.308  2.29 0.172 0.134 

ˆmax S  2.03 0.137 0.300  3.13 0.009 0 

Right Skew 

Sharpe ratio 5.13 0.007 0  1.33 0.219 0.354 

Gain/loss ratio 6.01 0.008 0  2.07 0.008 0.001 

Sortino ratio 5.41 0.006 0  1.41 0.215 0.343 

ˆmax S  5.21 0.005 0  1.55 0.020 0.107 
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Table 7: Composition of Option Portfolios 

We present results for the Sharpe ratio portfolio selection criterion. We present results for the entire available sample 

period and before, after, and during the financial crisis. The total number of contracts in each category is the sum of 

the absolute values of the number of long and short contracts. 

 

Option 

Maturity 

Total # 

of call 

contracts 

# short 

call 

contracts 

# long 

call 

contracts 

 

Total # 

of put 

contracts 

# short 

put 

contracts 

# long 

put 

contracts 

1990.01-2013.02 (N = 278) 

28 days 0.72 0.60 0.12  0.27 0.17 0.10 

14 days 0.79 0.69 0.10  0.18 0.10 0.08 

7 days  0.86 0.72 0.13  0.12 0.06 0.06 

1990.01-2008.10 (N = 220) 

28 days 0.79 0.65 0.14  0.21 0.11 0.10 

14 days 0.81 0.70 0.11  0.17 0.09 0.08 

7 days 0.87 0.73 0.14  0.12 0.06 0.06 

2008.11-2009.10 (N = 12) 

28 days 0.28 0.25 0.03  0.72 0.67 0.05 

14 days 0.47 0.41 0.06  0.44 0.36 0.09 

7 days 0.73 0.65 0.09  0.17 0.12 0.05 

2009.11-2013.02 (N = 46) 

28 days 0.50 0.46 0.04  0.44 0.32 0.12 

14 days 0.78 0.69 0.09  0.15 0.08 0.08 

7 days 0.83 0.71 0.12  0.08 0.04 0.04 
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Table 8: Frequency of 28-Day Options in the OT Portfolios 

We present the percentage of the months out of the total number of sample months in which 0, 1, 2, or 3 types of 

options are included in the optimal zero-net-cost portfolio. For example, in the first row of the table, OTM short calls 

with two different strike-to-price ratio are included in 5.1% of the sample months. ATM calls (puts) are included in 

the category of ITM calls (puts). We present results when the selection criterion is the Sharpe ratio. 

 

Option type 0 1 2 3 > 0 

1990.01-2013.02 (N = 278) 

Short calls OTM 11.7 82.8 5.5 0 88.3 

Short calls ITM 69.2 28.6 2.2 0 30.8 

Long calls OTM 43.2 41.4 15.4 0 56.8 

Long calls ITM 93.4 6.6 0 0 6.6 

Short puts OTM 34.4 59.0 6.6 0 65.6 

Short puts ITM 89.7 9.9 0.4 0 10.3 

Long puts OTM 31.5 57.9 10.3 0.4 68.5 

Long puts ITM 78.0 21.6 0.4 0 22.0 

1990.01-2008.10 (N = 220) 

Short calls OTM 7.0 87.4 5.6 0 93.0 

Short calls ITM 71.6 26.0 2.3 0 28.4 

Long calls OTM 35.3 46.5 18.1 0 64.7 

Long calls ITM 91.6 8.4 0 0 8.4 

Short puts OTM 40.9 57.7 1.4 0 59.1 

Short puts ITM 87.4 12.1 0.5 0 12.6 

Long puts OTM 36.7 53.5 9.3 0.5 63.3 

Long puts ITM 80.9 18.6 0.5 0 19.1 

2008.11-2009.10 (N = 12) 

Short calls OTM 22.2 71.1 6.7 0 77.8 

Short calls ITM 55.6 42.2 2.2 0 44.4 

Long calls OTM 71.1 24.4 4.4 0 28.9 

Long calls ITM 100 0 0 0 0 

Short puts OTM 13.3 68.9 17.8 0 86.7 

Short puts ITM 97.8 2.2 0 0 2.2 

Long puts OTM 13.3 73.3 13.3 2.2 88.9 

Long puts ITM 77.8 22.2 0 0 22.2 

2009.11-2013.02 (N = 46) 

Short calls OTM 58.3 41.7 0 0 41.7 

Short calls ITM 75.0 25.0 0 0 25.0 

Long calls OTM 83.3 8.3 8.3 0 16.7 

Long calls ITM 100 0 0 0 0 

Short puts OTM 0 41.7 58.3 0 100 

Short puts ITM 100 0 0 0 0 

Long puts OTM 40.0 55.6 2.2 4.4 62.2 

Long puts ITM 77.8 22.2 0 0 22.2 
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Table 9: Characteristics of Calls in Relation to the Smile, 1990.01-2013.02 

We present results for the Sharpe ratio portfolio selection criterion. Left (right) skew is 5% OTM IV (5% ITM IV) net 

of the ATM IV for a given cross-section. The total number of contracts in each category is the sum of the absolute 

values of the number of long and short contracts. Each tercile for a given smile characteristic corresponds to 92 

observations. 

 

 

 

 Lowest Tercile  Highest Tercile 

Option 

Maturity 

Total # 

of 

contracts 

#  of 

short 

contracts 

#  of 

long 

contracts 

 

Total # 

of 

contracts 

# of 

short 

contracts 

# of long 

contracts 

ATM IV 

28 days 0.92 0.72 0.20  0.44 0.40 0.04 

14 days 0.90 0.78 0.12  0.64 0.57 0.06 

7 days  0.88 0.74 0.14  0.83 0.71 0.12 

Left Skew  

28 days 0.79 0.65 0.14  0.64 0.52 0.11 

14 days 0.78 0.69 0.09  0.76 0.67 0.09 

7 days 0.89 0.74 0.15  0.82 0.69 0.13 

Right Skew 

28 days 0.48 0.43 0.06  0.91 0.73 0.18 

14 days 0.63 0.57 0.06  0.92 0.79 0.14 

7 days 0.81 0.70 0.12  0.90 0.74 0.15 
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Table 10: Characteristics of Puts in Relation to the Smile, 1990.01-2013.02 

We present results for the Sharpe ratio portfolio selection criterion. Left (right) skew is 5% OTM IV (5% ITM IV) net 

of the ATM IV for a given cross-section. The total number of contracts in each category is the sum of the absolute 

values of the number of long and short contracts. Each tercile for a given smile characteristic corresponds to 92 

observations. 

 

 

 

 Lowest Tercile  Highest Tercile 

Option 

Maturity 

Total # 

of 

contracts 

#  of 

short 

contracts 

#  of 

long 

contracts 

 

Total # 

of 

contracts 

# of 

short 

contracts 

# of long 

contracts 

ATM IV 

28 days 0.08 0.04 0.04  0.54 0.37 0.17 

14 days 0.10 0.05 0.05  0.29 0.16 0.13 

7 days  0.10 0.05 0.06  0.15 0.08 0.07 

Left Skew  

28 days 0.20 0.12 0.08  0.35 0.24 0.12 

14 days 0.19 0.11 0.08  0.22 0.12 0.10 

7 days 0.08 0.04 0.03  0.14 0.07 0.08 

Right Skew 

28 days 0.51 0.34 0.17  0.09 0.05 0.04 

14 days 0.29 0.17 0.13  0.08 0.04 0.04 

7 days 0.15 0.08 0.07  0.07 0.03 0.04 
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Table 11: Portfolio Returns and Stochastic Dominance Tests for “Second Pass” Options, 

1990.01-2013.02 
 

We remove the options that are included in the “first pass” and repeat the search with the remaining options in the 

cross-section. We present results for four different portfolio selection criteria: the Sharpe ratio, gain/loss ratio, Sortino 

ratio, and the maximization of Ŝ . Only the cross-sections with at least three calls and puts are admitted in the sample. 

OT IT
   is the mean and 

OT IT



is the volatility of the difference of the annualized percentage return between the 

IT and OT portfolios. In the top panel, we present results for portfolios constructed 28 days to the option maturity; out 

of the 278 dates there are 265 dates with feasible portfolios. In the middle panel, we present results for portfolios 

constructed 14 days to the option maturity; out of the 278 dates there are 265 dates with feasible portfolios. In the 

bottom panel, we present results for portfolios constructed 7 days to the option maturity; out of the 278 dates there are 

270 dates with feasible portfolios. The volatility of the return of the 28-day, 14-day and seven-day IT portfolios is 

16.48%, 17.15%, and 18.12%, respectively. Statistical test are performed on the basis of the total number of dates. 

The p-values for the difference in means are derived under via bootstrap with 10,000 draws. For the DD test, 10% 

trimming (deleting sequentially lowest outcomes in either return set) in the left tail is uniformly performed while 

similar trimming in the right tail is as shown. The results of the DD tests without trimming in the right tail are not 

shown because they are qualitatively the same as the p-values for the difference in means. 

 

Portfolio 

selection 

criterion 

  p-value for 
0   OT

  
OT IT




 
DD test p-value 

5% trim 10% trim 

28-Day Options 

Sharpe ratio 0.22 0.351 15.30 2.94 0.133 0.002 

Gain/loss ratio 0.22 0.353 15.30 2.94 0.132 0.002 

Sortino ratio 0.22 0.353 15.30 2.94 0.132 0.002 

ˆmax S  0.17 0.372 15.30 2.93 0.152 0 

14-Day Options 

Sharpe ratio 1.28 0.131 15.38 3.57 0 0 

Gain/loss ratio 1.25 0.164 14.85 4.20 0 0 

Sortino ratio 1.15 0.158 15.37 3.59 0 0 

ˆmax S  1.38 0.112 15.37 3.56 0 0 

7-Day Options 

Sharpe ratio 0.77 0.334 16.12 3.73 0.001 0.001 

Gain/loss ratio 1.22 0.254 15.71 4.32 0.003 0.005 

Sortino ratio 0.54 0.383 16.12 3.74 0.001 0.001 

ˆmax S  0.76 0.329 16.13 3.68 0 0 
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Table 12: Regression Residuals of Options in the Optimal Portfolios, 1990.01-2013.02 

The table presents the means and t-stats of the residuals of the options that enter the optimal portfolios in units of the 

annualized IV in percentage points. For example, for short calls in the first line of the table, the mean residual 0.09 

implies that short calls in the optimal portfolio have, on average, annualized IV 0.09% above the skew. The 

standardized residuals are standardized each month by the standard deviation of the residuals in that month. 

 

Option Type # Obs. Residuals 

Standardized 

Residuals 

Mean t-stat Mean t-stat 

28-day Options 

Short Call 346 0.09 1.47 -0.02 -0.35 

Long Call 469 -0.17 -3.37 -0.12 -2.48 

Short Put 226 0.19 2.89 0.13 1.46 

Long Put 278 -0.35 -8.14 -0.33 -7.68 

14-day Options 

Short Call 371 0.07 1.38 -0.04 -0.52 

Long Call 482 -0.18 -3.85 -0.27 -3.76 

Short Put 203 0.17 2.74 0.17 1.38 

Long Put 225 -0.32 -5.74 -0.35 -5.78 

7-day Options 

Short Call 340 0.08 1.39 -0.07 -0.58 

Long Call 512 -0.15 -3.38 -0.30 -3.24 

Short Put 135 0.18 2.41 0.10 0.69 

Long Put 157 -0.33 -5.35 -0.37 -3.70 

 

 

 

 

 

Table 13: Excess Returns Adjusted for Risk with the Three Fama-French Factors, 1990.01-

2013.02 

The excess returns of the OT options portfolio are adjusted for risk with the three factors in Fama and French (1993) 

by running the time-series regression 
, , , ,OT t M M t SMB SMB t HML HML t t

r r r r         , where 
, , ,

, , ,
OT t M t SMB t

r r r and 

,HML t
r are the excess returns of the OT, market, small-minus-big, and high book-to-market minus low book-to-market 

portfolios in month t. Standard errors in parentheses, Newey-West (1987) corrected using four lags. 

 

  M
  

SMB
  

HML
  

0.64 -0.09 -0.02 -0.06 

(0.07) (0.02) (0.01) (0.03) 



55 

 

Table 14: Excess Returns Adjusted for Risk with the Constantinides, Jackwerth, and Savov 

(2013) Factors, 1990.01-2013.02 

The excess returns of the OT options portfolio are adjusted for market risk and one of the factors “Jump”, “Volatility 

Jump”, “Volatility”, or “Liquidity” as , ,OT t M M t f f
r r    , where the risk prices of these factors, 

, ,  , and 
Jump VolJump Vol Liq

     are estimated in Constantinides, Jackwerth, and Savov (2013) either from the universe of 

equities or from the universe of index options. Standard errors in parentheses, Newey-West (1987) corrected using 

four lags. 

 

Jump Vol. Jump Volatility Liquidity 

Risk Premia Estimated from Equities 

0.75 0.41 0.67 0.65 

(0.07) (0.07) (0.07) (0.07) 

Risk Premia Estimated from Options 

0.88 0.35 0.69 0.72 

(0.07) (0.07) (0.07) (0.07) 

 

 

 

 

 

Table 15: Excess Returns Adjusted for Risk with the Christoffersen, Heston, and Jacobs 

(2013) Stochastic Discount Factor, 1990.01-2013.02 

The table displays in percent the average monthly excess return and the risk-adjusted excess return of the index and 

the OT portfolio. Confidence intervals on t-statistics were derived via bootstrap procedure like in CHJ (2013, Table 

2). 

 

 Excess Return  Risk Adjusted Excess Return 

T 

(days) 
  t-stat 

t-stat 

95% 

LCI
 

t-stat 

95% 

UCI
 

 
  t-stat 

t-stat 

95% LCI
 

t-stat 

95% UCI
 

 A: Index Returns 

28 0.78 2.68 -1.89 2.05  -2.2E+07 -1.00 -1.16 2.3E+05 

21 0.93 2.72 -1.83 2.11  -1.5E+07 -1.00 -1.16 6.8E+05 

14 0.93 2.17 -1.90 2.03  -2.3E+04 -1.00 -1.16 2.8E+03 

7 1.65 2.58 -1.90 2.03  -1.9E+04 -1.00 -1.16 1.5E+03 

 B: OT Portfolios 

28 5.53 2.06 -2.53 1.65  5.8E+06 1.00 -5.2E+04 1.16 

21 7.40 4.74 -2.52 1.70  2.1E+06 1.00 -1.1E+05 1.16 

14 6.77 2.63 -1.56 2.66  1.3E+04 1.01 -2.1E+02 1.17 

7 18.00 1.23 -5.47 1.34  2.1E+05 1.00 -9.4E+03 1.16 
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Table 16: Frictionless Returns on Optimal Portfolios and Straddles, 1990.01-2013.02 

The table displays in percent monthly frictionless average excess returns on OT portfolios and straddles as well as 

95% bootstrap confidence intervals for market returns. The symbols *, **, and *** denote statistical significance at the 

10%, 5%, and 1% level via bootstrap with 10,000 draws. p-values for this test are consistent with bootstrapping t-

statistics as in CHJ (2013, Table 2). 

 

T (days) MARKET
  

MODEL
  95% LCI

 
95% UCI

 

OT Portfolios 

28 5.59** 20.35*** 0.64 11.13 

21 7.77*** 20.55*** 4.55 10.65 

14 7.36*** 15.02*** 1.20 11.37 

7 18.28* 43.91*** -3.49 50.76 

Straddles 

28 0.61*** 2.08** 0.23 0.95 

21 0.48** 1.92*** 0.04 0.87 

14 0.83*** 1.99*** 0.33 1.28 

7 1.38*** 1.94*** 0.65 2.12 
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Table 17: Portfolio Returns and Stochastic Dominance Tests for Three Indices, 2006.01-

2013.02 

The table presents results for the Sharpe ratio portfolio selection criterion. T is the option maturity in calendar days, 

the number of dates with available data corresponds to possible dates of 86 for the first three lines in each panel; for 

the fourth line with the results for weekly options which mature on Fridays other than the third, the number of possible 

dates is 282.   is the mean and 
OT

  (
IT

 ) is the volatility of the OT (IT) portfolio and 
OT IT




 is the volatility of the 

difference of the annualized percentage return between the OT and IT portfolios. The p-values for the difference in 

means are derived under via bootstrap with 10,000 draws. For the DD test, 10% trimming (deleting sequentially lowest 

outcomes in either return set) in the left tail is uniformly performed while similar trimming in the right tail is as shown. 

The results of the DD tests without trimming in the right tail are not shown because they are qualitatively the same as 

the p-values for the difference in means. 

 

T 
# 

Dates  

# 

Feas. 
  p-value for 

0   OT
  

IT
  

OT IT



 

DD test p-value 

5% trim 10% trim 

CAC Index 

28 82 74 1.05 0.315 18.47 20.88 5.67 0.235 0.180 

14 86 78 3.99 0.068 21.37 23.36 5.83 0.019 0 

7 84 76 5.07 0.023 22.06 23.36 4.81 0 0 

DAX Index 

28 80 75 0.43 0.395 22.13 23.34 3.61 0.382 0.293 

14 79 65 1.94 0.073 23.41 24.59 2.37 0.041 0.008 

7 78 75 5.69 0.011 23.56 24.84 3.36 0.005 0.005 

7a  224 122 2.24 0.057 24.62 25.53 3.19 0.012 0.006 

S&P 500 Index 

28 86 84 0.22 0.302 20.07 20.62 1.75 0.197 0.107 

14 86 84 2.07 0.061 21.98 22.88 2.31 0.006 0.004 

7 86 85 6.17 0.002 19.13 20.23 3.18 0.009 0.001 

7a 257 227 1.94 0.027 20.23 20.80 2.25 0 0 
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Table 18: Portfolio Returns and Stochastic Dominance Tests in Relation to Volatility 

Forecast, 1990.01-2013.02 

The table presents results for the Sharpe ratio portfolio selection criterion.   is the mean and 
OT IT




is the volatility 

of the difference of the annualized percentage return between the IT and OT portfolios. The volatility of the return of 

the 28-day, 14-day and seven-day IT portfolios is 16.48%, 17.15%, and 18.12%, respectively. Statistical test are 

performed on the basis of the total number of dates. The p-values for the difference in means are derived under via 

bootstrap with 10,000 draws. For the DD test, 10% trimming (deleting sequentially lowest outcomes in either return 

set) in the left tail is uniformly performed while similar trimming in the right tail is as shown. The results of the DD 

tests without trimming in the right tail are not shown because they are qualitatively the same as the p-values for the 

difference in means. 

 

Days to 

maturity 

# Feasible 

dates 
  

p-value 

for 0   OT
  

OT IT



 

DD test p-value 

5% trim 10% trim 

A: GJR 

28 218 0.45 0.170 15.50 2.57 0.029 0 

14 215 1.23 0.019 16.34 1.91 0 0 

7 222 1.53 0.082 17.04 2.60 0 0 

B: EGARCH 

28 224 0.32 0.235 15.79 2.11 0.125 0.007 

14 225 1.25 0.018 16.39 1.92 0 0 

7 222 2.08 0.053 17.11 2.85 0 0 

C: Random Walk 

28 243 -0.30 0.682 15.38 2.85 1 1 

14 235 1.27 0.005 16.61 1.51 0.010 0 

7 239 0.93 0.176 17.33 2.25 0 0 
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Figure 1: Difference in the Realized Returns between the OT and IT 28-day Portfolios 

The returns are measured in the 278 28-day and 14-day periods over 1990.01-2013.02 and sorted by the 

contemporaneous S&P 500 returns. Bars in the graph correspond to means for 100 equally spaced S&P returns. 

Consistent with the objective of constructing OT portfolios that stochastically dominate the IT portfolios, the 

difference in returns is generally decreasing in the S&P 500 index return. 

 

 

 

 

 

 

 

Figure 2: Time Series of Maximized Sharpe Ratio and Expected Gain 

The figure displays the time series for expected Sharpe ratio and the corresponding expected gain. The solid lighter 

line corresponds to 28-day options and the dashed darker line corresponds to 14-day options. 

-25 -20 -15 -10 -5 0 5 10 15 20

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
A: 28-day Options

S&P 500 Return (%)

R
O

T
-R

IT
 (

%
)

-25 -20 -15 -10 -5 0 5 10 15 20

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
B: 14-day Options

S&P 500 Return (%)

R
O

T
-R

IT
 (

%
)

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
A: Expected Sharpe Ratio

Year (beginning)

S
h
a
rp

e
 R

a
ti
o

 

 

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

5

10

15

20

25

30
B: Expected Gain

Year (beginning)

G
a
in

 (
%

)


