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Abstract

Benchmarking incentivizes fund managers to invest a fraction of their funds’ assets in their
benchmark indices, and such demand is inelastic. We construct a measure of inelastic demand a
stock attracts, benchmarking intensity (BMI), computed as its cumulative weight in all bench-
marks, weighted by assets following each benchmark. Exploiting the Russell 1000/2000 cutoff,
we show that changes in stocks’ BMIs instrument for changes in ownership of benchmarked
investors. The resulting demand elasticities are low. We document that both active and passive
fund managers buy additions to their benchmarks and sell deletions. Finally, an increase in
BMI lowers future stock returns.
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1 Introduction

The asset management industry has been growing in size and importance over time. To date,
it has amassed more than $100 trillion in assets under management (AUM) worldwide.1 A large
fraction of these funds are managed against benchmarks (e.g., the S&P 500, FTSE-Russell indices,
etc.). Benchmarks convey to fund investors information about the types of stocks the fund invests
in and act as a useful tool for performance evaluation of fund managers. With a growing investor
appetite for different investment styles, benchmarks are becoming increasingly heterogeneous. As
of June 2021, the AUM share of U.S. domestic equity funds benchmarked to the S&P 500 was 35%,
the next 27% was split between the Russell indices, followed by 15% benchmarked to the CRSP
indices.2 Our objective is to link membership in multiple benchmarks to stock prices and expected
returns, as well as demand by fund managers.

In this paper, we argue that stocks included in a benchmark form a preferred habitat for
fund managers evaluated against that benchmark. In our model, benchmarked fund managers
have an incentive to hold stocks in their benchmarks, which makes a fraction of their demand for
these stocks inelastic. We derive a measure, which we term benchmarking intensity (BMI), that
captures the aggregate inelastic demand of all benchmarked managers. We define the benchmarking
intensity of a stock as the cumulative weight of the stock in all benchmarks, weighted by assets
under management following each benchmark, relative to the stock’s market capitalization. For
the former, we use the historical composition of 34 U.S. equity indices.3 For the assets, we use the
AUM of U.S. equity mutual and exchange-traded funds. We extract the history of fund benchmarks
directly from their prospectuses.4

We exploit the variation in the benchmarking intensity of stocks that transition across the
Russell 1000/2000 index cutoff to establish the effects of BMI on stock prices, expected returns, fund
ownership, and demand elasticities. First, we show that the change in BMI resulting from an index
reconstitution is positively related to the size of the index effect.5 Second, we argue that a change in
a stock’s BMI predicts the change in ownership of benchmarked investors in this stock. Specifically,
it accounts for both active and passive managers’ demand and for all relevant benchmarks that
include this stock, which allows us to establish a lower bound for the price impact of benchmarked
managers’ trades. We then use changes in BMI as an instrumental variable to estimate the price
impact of institutional investors’ trades (or the price elasticity of demand). Third, we highlight
that active managers contribute substantially to the benchmarking intensity and document that
1Based on Willis Towers Watson report, https://www.thinkingaheadinstitute.org/news/article/global-asset-manager-
aum-tops-us100-trillion-for-the-first-time/.

2Figure 4 in the Appendix plots assets under management of US domestic equity mutual funds and exchange-traded
funds in our sample, by benchmark. The heterogeneity of benchmarks is apparent from the figure, especially for
mid-cap and small stocks.

3Taken together, these indices represent close to 90% of the US domestic equity mutual and exchange-traded fund
assets in our sample.

4Details of the procedure and methods used to validate our benchmark data are described in the text. Previous
research has used a snapshot of fund benchmarks or assumed S&P 500 as a universal benchmark.

5A boost to a company’s share price when it is added to an index.
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they buy additions to their benchmarks and sell deletions. Finally, we show that, consistent with
our theory, an increase in a stock’s benchmarking intensity leads to underperformance relative
to comparable stocks for a period of one to five years. This result shows that it may take much
longer for arbitrageurs to absorb a demand shock from benchmarked fund managers than previously
documented or that the effect of index inclusion on stock prices is permanent.

We start with a simple model that highlights the channel through which a stock’s bench-
marking intensity affects its price and expected return. The model features fund managers alongside
standard direct investors. All investors are risk-averse. A fund manager’s compensation depends
on performance relative to her benchmark. The model predicts that such performance evaluation
makes benchmark stocks the preferred habitat of managers evaluated against that benchmark.
The fund manager’s higher demand for her benchmark stocks makes prices of these stocks higher
in equilibrium and their expected returns lower. This effect is permanent, persisting for as long
as the stocks remain in the benchmark. In an equilibrium with heterogeneous benchmarks, the
variable that captures the additional (inelastic) demand of benchmarked managers – beyond what
the standard risk-return trade-off would predict – is exactly the benchmarking intensity.

In our empirical analysis, we explore how a shock to a stock’s BMI affects its price and
ownership. Isolating the effects of this variation is challenging because, through index membership,
BMI may be related to other stock characteristics, most importantly size and liquidity. Our solution
is to exploit the cutoff between the Russell 1000 and 2000 indices, which separates stocks that are
very similar in size and other characteristics but differ significantly in terms of their benchmarking
intensities. Mechanical index reconstitution rules lead to the close-to-random index assignment into
the Russell 1000 and 2000 indices, which serves as a source of (conditionally) exogenous variation
in benchmarking intensity. So our tests compare stocks close to the cutoff that experience different
changes in BMI.

We empirically link the size of the price pressure experienced by a stock to the change in
its benchmarking intensity. Corroborating the results of Chang, Hong, and Liskovich (2015), we
document price pressure upon index reconstitution (the index effect). As in the rest of the index
effect literature, Chang, Hong, and Liskovich look only at the average effect.6 Our contribution is
to show, in the cross-section of stocks around the Russell cutoff, that stocks whose BMI changed the
most experience the largest index effect. We then use our regression estimates from this analysis
to establish a lower bound on the price impact of benchmarked fund managers’ trades and find
that a 1% change in BMI leads to a 27bps higher return in the month of index reconstitution. It
is a lower bound because, in practice, fund managers incur transaction costs, which often prevents
them from trading as BMI would predict, especially if the funds are active.

We show that BMI predicts changes in institutional ownership and we can therefore esti-
mate the actual price impact of institutional investors’ trades. Ownership changes are, of course,
endogenous, and we argue that changes in BMI act as a valid instrument for them. The litera-
6The exceptions are Greenwood (2005) and Wurgler and Zhuravskaya (2002) who link the size of the index effect to
arbitrage risk.
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ture has used the Russell 1000/2000 index membership (dummy) as an instrument for institutional
ownership, but this instrument is rather coarse. The advantage of BMI is that it is a continu-
ous measure, which makes it a stronger instrument, and we argue that it remains (conditionally)
exogenous. The instrumental variable approach yields an estimate of 1.5 for the price impact of
institutional investors’ trades. Similarly to Koijen and Yogo (2019), we highlight that the resulting
price elasticities of demand for stocks are quite low.

BMI allows us to measure the price elasticity of demand for stocks more precisely than
in the related literature, not only because it is continuous but also because it takes into account
the inelastic demand of active managers stemming from different benchmarks that include these
stocks. To measure the price elasticity of demand, most papers have exploited index reconstitutions
and have used the resulting change in passive assets as a shock to net supply. If active managers’
demand features an inelastic component, measures of elasticity based on a passive demand change
upon index reconstitution will be inaccurate. We also argue that accounting for heterogeneous
benchmarks (e.g., that each Russell 1000 stock also belongs to the Russell 1000 Value and/or
Growth, and often to the Russell Midcap) is important when estimating the elasticity of demand
for stocks.

We show that both active and passive investors have a considerable fraction of holdings
concentrated in their benchmarks and that their rebalancing around the Russell cutoffs is consistent
with changes to their benchmarks. The majority of recent studies attributed the discontinuities in
ownership around the cutoff to passive investors, i.e., index and exchange-traded funds. In line with
the literature, we find highly significant rebalancing of index additions and deletions for passive
funds in the direction imposed by their benchmarks. For example, passive funds benchmarked to
the Russell 2000 purchase 77bps of shares of stocks added to the Russell 2000. These funds also
sell deleted stocks in similar proportions. Using the data on funds’ benchmarks, we are able to
demonstrate the same pattern in active funds. We find that active funds benchmarked to the Russell
2000 also sell deletions, decreasing their ownership share by 55bps. Active funds benchmarked to
the Russell 1000 and Russell Midcap increase their ownership shares in stocks added to the Russell
1000 and Midcap by 12bps and 39bps, respectively. We do not have an identification strategy of
comparable quality for other benchmarks but we show that aggregate active fund portfolios indeed
resemble their benchmarks. So in line with our theory, stocks inside the benchmarks serve as both
active and passive funds’ preferred habitats.

To validate the prediction of our model that the more active funds have a smaller inelastic
component in their demand functions, we sort funds based on their Active Share, a measure of
activeness proposed by Cremers and Petajisto (2009). We show that more active funds both invest
less in their benchmarks and rebalance index additions and deletions less than their less active
peers. We also explore implications of differences in fund activeness in the construction of BMI.

Finally, we find that, consistent with our theory, stocks whose BMIs have gone up signifi-
cantly underperform in the long run. Exploiting again the Russell cutoff, we show that increased
inelastic demand of benchmarked fund managers leads to lower expected returns of these stocks for
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horizons of up to 5 years relative to their peers close to the cutoff. The economic magnitudes are
sizeable, averaging 2.8% lower return in the first year for additions to the Russell 2000 index.

Related research. This paper is related to several strands of literature, including equi-
librium asset pricing with benchmarked fund managers, index effect, and empirical research on the
effects of institutional ownership.

Among theoretical contributions, the first paper to study benchmarking is Brennan (1993).
Brennan derives a two-factor asset pricing model in a two-period economy with a benchmarked
fund manager. Cuoco and Kaniel (2011), Basak and Pavlova (2013) and Buffa, Vayanos, and
Woolley (2014) investigate equilibrium asset pricing effects of delegated portfolio management in
dynamic economies. The closest paper to ours in this strand of literature is Kashyap, Kovrijnykh,
Li, and Pavlova (2021). None of these works, however, considers heterogeneous benchmarks. The
only paper that does is Buffa and Hodor (2018), but they focus primarily on asset return comove-
ment. In our model, heterogeneous habitats of fund managers arise because of the heterogeneity
in benchmarks. Such habitats could also be driven by optimal narrow investment mandates in del-
egated asset management (e.g., van Binsbergen, Brandt, and Koijen (2008), He and Xiong (2013))
or different investor styles (Barberis and Shleifer (2003)). A related idea of studying how investor
habitats affect asset prices is exlored in preferred habitat models of the term structure of interest
rates (e.g., Vayanos and Vila (2021)).

Both our theoretical and empirical results are related to the index effect literature. The
index effect was first documented by Shleifer (1986) and Harris and Gurel (1986) for additions
to the S&P 500 index and subsequently found in many other markets and asset classes.7 This
literature typically measures the average size of index effect, while we show how it varies in the
cross-section with the change in BMI.

The existence of the index effect challenges the standard theories, which predict that demand
curves for each stock are very elastic and therefore index inclusion should have no effect on asset
prices and expected returns. The index effect literature has converged to the view that stocks are
not perfect substitutes, which suggests that the demand curves for stocks are downward-sloping.
Our preferred habitat model provides a microfoundation for why stocks are imperfect substitutes.8

In the model, fund managers’ demand features an inelastic component due to benchmarking. This
affects stock prices and expected returns for as long as the stocks remain in the benchmark.

Our analysis delivers an alternative estimate of stock price elasticity of demand based on
an index inclusion event. Most of the known estimates are based on a single index membership,
while the BMI measure accounts for the demand related to all large benchmarks in a comprehensive
way. Furthermore, the change in a stock’s BMI helps measure the price elasticity of demand more
accurately in a world where active managers’ demand has both elastic and inelastic components.
7Most of the studies focus on S&P 500 and Russell composition changes, though others also cover such index families
as MSCI, DJIA, Nikkei, FTSE, CAC, Toronto Stock Exchange Index, etc. For example, Chen, Noronha, and Singal
(2005) document a long-lasting price increase of the S&P 500 additions, which increases in magnitude through time.
Hacibedel and van Bommel (2007) also find permanent price increase for emerging markets indices within the MSCI
family. Greenwood (2005) documents an index effect for a redefinition of the Nikkei 225 index in Japan.

8Petajisto (2009) offers a complemetary view, also based on asset manager demand.
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Recent literature stresses the importance of incorporating downward-sloping demand curves for
stocks in the asset pricing and macro-finance models (for example, Gabaix and Koijen (2020)), and
our results may inform such models.

Our instrumental variable approach to computing demand elasticities is related to that in
Koijen and Yogo (2019), who propose a characteristics-based demand-system approach which can
be used to estimate price impact of a given institutional investor. We focus on aggregate demand
of benchmarked institutions and perform estimation in changes. Our estimate of the aggregate
price impact is slightly lower than theirs, most likely because we consider stocks around the Russell
1000/2000 cutoff, which are closer substitutes.

The closest empirical work to ours is Chang, Hong, and Liskovich (2015). It is the first
paper to build a regression discontinuity design (RDD) on the cutoff between the Russell 1000 and
2000 indices in order to quantify the price pressure stemming from institutional demand. The paper
finds a 5% index effect in the month of addition to the Russell 2000. It also documents a decreasing
trend in this index effect and attributes it to the alleviation of limits to arbitrage. Even though we
use the same cutoff for identification, we are the first to document the resulting difference in the
long-run returns (twelve months to five years) of stocks that moved indices and those that did not.
We view the duration of this effect as evidence that index membership affects the risk premium of
a stock. Furthermore, we discuss the advantages of using BMI over the index membership dummy
to measure demand elasticities and show how the estimates of Chang, Hong, and Liskovich change
in a setting with heterogeneous benchmarks.

There is a growing body of literature studying implications of passive ownership for cor-
porate governance using the Russell cutoff.9 This literature documents predictable rebalancing of
passive funds around the cutoff, but not active. In line with the findings of this literature, we
find that the total active ownership in stocks that switched indices does not change. However, our
granular data allows us to show that the identities of active funds change as benchmarks would
predict. For example, a stock that is deleted from the Russell 2000 is sold by the active funds
benchmarked to the Russell 2000 and bought by active funds benchmarked to the Russell 1000 and
Midcap. As a result, monitoring incentives of active managers may change and this may affect
corporate governance.

The paper proceeds as follows. Section 2 explains the implications of heterogeneous bench-
marks for stock returns. In Section 3, we construct the measure of benchmarking intensity, show
how it is linked to the size of the index effect and the elasticity of demand. We discuss funds’
preferred habitats and rebalancing in Section 4. In Section 5, we inspect the relationship between
BMI and long-run returns. Omitted details and further robustness exercises are relegated to the
appendices.
9The list of papers includes but is not limited to: Heath, Macciocchi, Michaely, and Ringgenberg (2021), Appel,
Gormley, and Keim (2019), Glossner (2021), Schmidt and Fahlenbrach (2017), Appel, Gormley, and Keim (2016).
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2 Model of Delegated Asset Management with Heterogeneous
Benchmarks

To illustrate the main mechanism, we first develop a simple model of asset prices in the pres-
ence of benchmarking. It builds upon Brennan (1993) and Kashyap, Kovrijnykh, Li, and Pavlova
(2021) and introduces heterogeneous fund managers whose performance is evaluated relative to a
variety of benchmarks. The goal of the model is to characterize a relationship between bench-
marking intensity, our measure of capital that is inelastically supplied by fund managers, and stock
returns.

2.1 Model

Except for the presence of fund managers, our environment is standard. There are two
periods, t = 0, 1. The financial market consists of a riskless asset with an exogenous interest rate
normalized to zero (e.g., a storage technology) andN risky assets paying cash flowsDi, i = 1, . . . , N
in period 1. The cash flows of the risky assets are given by

Di = Di + βiZ + εi, βi > 0, i = 1, . . . , N,

where Z ∼ N(0, σ2
z) is a common shock and εi ∼ N(0, σ2

ε ) is an idiosyncratic one. The vectors
D ≡ (D1, . . . , DN )′ and S ≡ (S1, . . . , SN )′ denote vectors of period-1 cash flows and period-0 risky
asset prices, respectively. Period-1 risky asset prices equal D. The risky assets are in fixed supply
of θ ≡ (θ1, . . . , θN )′ shares. It is convenient to introduce the notation Σ ≡ Σz + INσ

2
ε for the

variance-covariance matrix of cash flows D, where Σz is a N × N matrix with a typical element
βiβjσ

2
z and IN is an N ×N identity matrix. We also set D ≡ (D1, . . . , DN )′ and β ≡ (β1, . . . , βN )′.
There are J benchmark portfolios that are used for performance evaluation. Each bench-

mark j is a portfolio of ωj ≡ (ω1j , . . . , ωNj)′ shares of the assets described above. Some components
of ωj can be zero.

There are two types of investors: direct investors and fund managers. Direct investors,
whose mass in the population is λD, manage their own portfolios. Fund managers manage portfolios
on behalf of fund investors. Fund investors can buy the riskless asset directly, but cannot trade
stocks; they delegate the selection of their portfolios to portfolio managers. The managers receive
compensation from fund investors. Each manager is evaluated relative to a benchmark. We denote
the mass of managers evaluated relative to benchmark j by λj .10 All investors have a constant
absolute risk aversion utility function over terminal wealth (or compensation), U(W ) = − exp−γW ,
where γ is the coefficient of absolute risk aversion.

The terminal wealth of a direct investor is given by W = W0 + θ′D(D−S), where the N × 1
vector θD denotes the number of shares held by the direct investor, and W0 is the investor’s initial
wealth. The direct investor chooses a portfolio θD to maximize his utility U(W ). A fund manager’s
10For simplicity, we assume that each fund investor employs one fund manager, but this can easily be relaxed.
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j compensation wj consists of three parts: one is a linear payout based on absolute performance
of the fund, the second piece depends on the performance of the fund relative to the benchmark
portfolio j, and the third is independent of performance (c). Specifically,

wj = aRj + b(Rj −Bj) + c, a ≥ 0, b > 0

where Rj ≡ θ′j(D − S) is the performance of the fund’s portfolio and Bj ≡ ω′j(D − S) is the
performance of benchmark j.11 The parameters a and b are the contract’s sensitivities to absolute
and relative performance, respectively. The fund manager chooses a portfolio of θj shares to
maximize his utility U(wj).

2.2 Portfolio Choice and Asset Prices

The portfolio demand of the direct investors is the standard mean-variance portfolio:12

θD = 1
γ

Σ−1
(
D − S

)
. (1)

In contrast, the fund managers do not have the same risk-return trade-off as direct investors,
because of their compensation contracts. The portoflio demand of manager j is given by

θj = 1
γ(a+ b)Σ−1

(
D − S

)
+ b

a+ b
ωj . (2)

The fund manager splits his risky asset holdings across two portfolios: the mean-variance portoflio
(the first term in (2)) and the benchmark portfolio (the second term). The latter portfolio arises
because the manager hedges against underperforming the benchmark. Consistent with the preferred
habitat view, the manager thus has a higher demand for stocks in her benchmark. Notice that the
demand for the benchmark portfolio ωj is inelastic. It does not depend on the riskiness of the assets
and depends only on the parameters of the compensation contract. It follows that, ceteris paribus,
stocks with a higher benchmark weight have a higher weight in the fund manager’s portfolio.

By clearing markets for the risky assets, λDθD + ∑J
j=1 λjθj = θ, we compute equilibrium

asset prices.

S = D − γAΣ

θ − b

a+ b

J∑
j=1

λjωj

 , (3)

where A ≡
[
λD +

∑
j
λj

a+b

]−1
modifies the market’s effective risk aversion.13

11Ma, Tang, and Gómez (2019) and Evans, Gómez, Ma, and Tang (2020) analyze compensation of fund managers in
the US mutual fund industry and provide evidence supporting our specification here. Endogenizing this compen-
sation structure is beyond the scope of this paper; see Kashyap, Kovrijnykh, Li, and Pavlova (2020) who derive it
as part of an optimal contract. Finally, see Kashyap, Kovrijnykh, Li, and Pavlova (2021) (Online Appendix B) for
an alternative specificaton of a benchmark, in which constituents are value-weighted. Such specification is not as
analytically tractable as ours, but it delivers similar insights.

12All proofs are in Appendix B.
13Our model can be extended to incorporate passive managers, who simply hold the benchmark portfolio. Suppose
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Equation (3) elucidates the determinants of the index effect in our model. The index
effect manifests itself through the benchmarking-induced price pressure term b

a+b
∑J
j=1 λjωj . This

term reflects the cumulative inelastic demand of fund managers and motivates our benchmarking
intensity measure used in the empirical part of the paper. Equation (3) implies that if a stock
gets added to a benchmark or if its weight in a benchmark increases, its price goes up. Another
implication is that the larger the mass of fund managers (λj ’s) following a benchmark, the higher
the benchmarking-induced price pressure and hence the bigger the index inclusion effect. The more
benchmarks a stock belongs to and the bigger its weight in the benchmarks, the more demand from
fund managers it attracts and therefore the higher the stock’s price.

Our next set of predictions is about the expected stock returns (or the cost of equity). The
expected return of stock i, expressed as a per-share return ∆Si ≡ Di − Si, is given by14

E[∆Si] = γAβiσ
2
zβ
′

θ − b

a+ b

J∑
j=1

λjωj

+ γAσ2
ε

θi − b

a+ b

J∑
j=1

λjωij

 . (4)

Equation (4) implies that the price pressure we discussed above is permanent, and it lasts
for as long as a stock remains in the fund managers’ benchmarks. Therefore, ceteris paribus, stocks
with higher benchmarking intensities, defined in our model as ∑J

j=1 λjωij , have lower expected
returns. Furthermore, if a stock’s benchmarking intensity goes up (e.g., due to an index inclusion),
its price should rise upon announcement and the expected return after the announcement should
be lower.

In summary, our model produces the following predictions:
Prediction 1: Stocks with higher benchmarking intensities have lower expected returns.
Prediction 2: If a stock’s benchmarking intensity goes up (e.g., due to an index inclusion),

its price should rise.
Prediction 3: If a stock’s benchmarking intensity goes up, the funds’ ownership of the

stock (∑j θij) should rise.
Prediction 4: If a stock enters benchmark j and exits benchmark k, funds benchmarked

to index j increase their demand for the stock (θij) while those benchmarked to index k decrease
their demand (θik).

Before turning to testing the above predictions empirically, we should acknowledge that in
the model benchmark weights are known with certainty and hence it cannot speak to differences

the total mass of fund managers benchmarked to index j, λj , consists of a mass λPj of passive managers and a mass
λAj of active. Then the expression for stock prices is:

S = D − γAΣ

(
θ −

J∑
j=1

[
b

a+ b
λAj ωj + λPj ωj

])
, where A ≡

[
λD +

∑
j
λAj

a+ b

]−1

.

14In models with CARA preferences and normally distributed cash flows, the return is usually expressed in per-share
terms. In our empirical analysis, however, we use per-dollar returns, rit+1 ≡ (Sit+1 − Sit)/Sit, as in the empirical
literature. We acknowledge this inconsistency, but we still prefer to keep our theoretical results in terms of per-share
returns, for expositional clarity.
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between anticipated and unanticipated changes in weights. Appendix B analyzes an extension of
our model in which benchmark weights are uncertain. Specifically, we add an extra period, t = −1,
in which benchmark weights are unknown and investors form expectations about them. In that
extension, all expressions from this section remain intact and hence Predictions 1–4 continue to
hold. Additionally, we show that realized stock returns at t = 0, when benchmark weights become
known, depend on∑J

j=1 λjωj−E∗[
∑J
j=1 λjωj ], where the expectation E∗[·] is under the risk-neutral

measure. In words, what matters for stock returns is an unanticipated change in BMI, rather than
BMI. The measure of an unanticipated change in BMI is more challenging to construct empirically
than that of BMI itself, and hence in our empirical tests we focus on a change in BMI following an
index reconstitution, leaving the construction of a measure of an unanticipated change in BMI to
future research.

3 Benchmarking Intensity in the Data

In this section, we use data on US domestic equity mutual funds and their prospectus
benchmarks to build a measure of benchmarking intensity. We document its basic properties and
apply this measure to the computation of the price elasticity of demand for stocks.

3.1 Dataset

The main sample is an annual panel of stocks which were the Russell 3000 constituents in
1998-2018.15 The main three pillars of data are historical benchmark weights, fund and institutional
holdings, and stock characteristics. The second and third are standard, we report details on them
in Section A.2 of Appendix.

In contrast to the previous studies, the dataset is granular with respect to benchmark infor-
mation. It includes primary prospectus benchmarks scraped directly from historical fund prospec-
tuses available on the website of the U.S. Securities and Exchange Commission16 and augmented
with a Morningstar snapshot. The scraping procedure and its validation are described in detail in
Section A.3 in the Appendix. We obtain benchmark constituent data from the following sources.
All the constituent weights for 22 Russell benchmark indices are from FTSE Russell (London Stock
Exchange Group). The Russell indices include (all total return in USD): Russell 1000, 2000, 2500,
3000, 3000E, Top 200, Midcap, Small Cap Completeness (blend) as well as their Growth and Value
counterparts. Constituent weights for the S&P 500 TR USD and S&P MidCap 400 TR USD are
from Morningstar and available from September 1989 and September 2001, respectively, to October
2015. We construct constituent weights for S&P 500 after October 2015 manually from constituent
lists and prices available through CRSP. We generate the S&P 400 weights from holdings of index
15Our main sample starts in 1998 because before that we do not have benchmark data of sufficient quality. Even
though the SEC’s electronic archives date back to 1994, many funds do not report their benchmarks in files available
prior to 1998. Please find the details in Section A.3. Our sample ends in December 2018 because the holdings data
used for the analysis of fund ownership is available with a lag.

16Follow https://www.sec.gov/edgar/searchedgar/mutualsearch.html
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funds (Dreyfus and iShares).17 The constituent weights for the CRSP US indices are from Morn-
ingstar and available from 2012. These indices include (all total return in USD): Total Market,
Large Cap, Mid Cap, Small Cap (blend) as well as their Growth and Value counterparts.

Our benchmark data has two advantages to prior research. First, the benchmark informa-
tion is a dynamic panel encompassing benchmark changes.18 Therefore, it accurately reflects the
benchmark used by funds at any point in time.19 Secondly, we obtain Russell index data from
FTSE Russell directly: our dataset includes proprietary total market values (capitalization) as of
the rank day in May and provisional constituent lists available before the reconstitution day in
June.

We report the descriptive statistics of the main calculated variables used in analysis in
Tables 9 and 10 in the Appendix.

3.2 Empirical Measure of Benchmarking Intensity

Guided by the model, we calculate the benchmarking intensity (BMI) for stock i in month
t as

BMIit =
∑J
j=1 λjtωijt

MVit
, (5)

where λjt is the assets under management (AUM) of mutual funds and ETFs benchmarked to
index j in month t, ωijt is the weight of stock i in index j in month t and MVit is the market
capitalization of stock i in month t. In our baseline BMI in (5), we treat active and passive assets
equally; Section 3.3.5 explores alternative definitions that adjust BMI for fund activeness. In our
theory, the price impact of additional inelastic demand (∆Si/∆

∑J
j=1 λjωij) is constant and does

not depend on the stock’s supply (equation (4)), which is unrealistic. This feature of CARA models
makes them tractable, but in our empirical analysis, to be consistent with the empirical literature
on price impact, the natural object to work with is the total inelastic demand the stock attracts,
as a fraction of the stock’s market capitalization. Furthermore, stock weight in any value-weighted
index j is

ωijt = MVit1ijt∑N
k=1MVkt1kjt

= MVit1ijt
IndexMVjt

,

where the index membership dummy 1ijt is equal to one if stock i belongs to index j at time t and
IndexMVjt is the total market cap of all stocks in index j at time t. Hence, an additional advantage
of this scaling of our theoretical measure is that the MVit terms cancel out from (5) and we can
17Since the S&P 400 index is relatively small, these weights do not contribute much to the analysis. We do not
include the S&P 600 index because its share is even smaller and the holdings-based weights are not of sufficient
quality.

18See Appendix, in which we show that our scraping procedure picked up such important benchmark changes as
Vanguard’s move from the MSCI to CRSP indices in 2013.

19We attribute funds with benchmarks with non-value weighted constituents and SRI screened funds to their ‘parent’
benchmarks, e.g., the S&P 500 equal-weighted index to the S&P 500 index. These funds are small in our sample
and removing them does not change the results.
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rewrite BMI as

BMIit =
J∑
j=1

λjt1ijt∑N
k=1MVkt1kjt

=
J∑
j=1

λjt1ijt
IndexMVjt

, (6)

Related literature has established that a stock’s transitions between the Russell 1000 and 2000
indices, captured by 1ijt, can be used as an instrument for changes in the stock’s ownership. Since
our BMI depends additionally only on aggregated variables such as the total AUM of each index
the stock belongs to and the total market capitalization of each index, it is plausible that ∆BMI

is also a valid instrument for changes in stock ownership.20 We examine this conjecture in detail
in Section 3.3.4.

Notice that the computation of BMI does not rely on holdings data. Historical holdings
data are available at best quarterly and can be noisy while index composition and funds’ AUM are
observed monthly.

Even though benchmarking intensity is typically slow-moving, considerable variation comes
from index membership. A useful illustration is a retailer Foot Locker Inc. (ticker FL). Figure
1 depicts a year-on-year evolution of its benchmarking intensity. Despite the evident comovement
between size and benchmarking intensity, the latter has more variation due to the changing index
membership and index asset flows: in 2000, FL joins the Russell 2000; in 2005, the S&P 400; in
2012, FL gets into the CRSP Small; in 2016, it gets added to the S&P 500.

Figure 2 illustrates the contribution of membership in each index to the benchmarking
intensity of FL. Even though the stock’s addition to S&P 500 clearly increases its BMI, the size
and variation of other components are significant. Panel (a) of Figure 6 in the Appendix shows
how much different benchmark styles (i.e., value, growth, and blend) contribute to FL’s BMI. In
our data, we only have style indices for the Russell and CRSP families, so the rest is attributed
to blend. Even with this limitation, it is apparent that style benchmarks occupy a considerable
fraction of BMI. These two illustrations highlight one of the key contributions of our measure – it
takes into account the heterogeneity of benchmarks and the overlaps between them.

Since the benchmarking intensity measure is built using the AUM of both active and passive
funds, there is a variation coming from the relative importance of these two fund types as depicted
20There are two potential caveats. First, some index providers use the float-adjusted market cap for the purposes
of index construction. That is, strictly speaking, (6) should be BMIit =

∑J

j=1
λjtFFijt1ijt∑N

k=1
MVktFFkjt1kjt

, where FFijt

denotes the float factor of stock i in index j at time t (the float factor may be index-specific). Because this float
factor reflects stock liquidity, it could be a potential source of endogeneity. Russell uses primarily companies’ SEC
filings to compute their free float. In our regression analysis, we use the official Russell free float in May, provided
to us by Russell, as one of our control variables and supplement it with bid-ask spread to account for any stale
information in the float factor. We could also scale BMI by float-adjusted market value provided by Russell instead
of the total market value from CRSP to completely exclude FF from the numerator. Our results are robust to this
alternative scaling and we choose the total market value scaling as our baseline because it makes our measure easy
to replicate. Second, value and growth indices typically include only a fraction of the market value of the stock
that they deem related to value or growth style. We see that, on average, this split of shares between Russell value
and growth indices does not strongly affect changes in BMI around the Russell cutoff (the necessary assumptions
are discussed in Appendix A.22). Furthermore, all our results are robust to controlling for the stock’s Russell
proprietary value ratio in May, M/B, and sales growth. To further alleviate possible concerns about endogeneity
of ∆BMI, in Section 3.3.4 we perform overidentifying restrictions tests.
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Figure 1: Benchmarking Intensity of Foot Locker Inc.

This figure plots the benchmarking intensity (left axis) and the total market value (right axis) of Foot Locker Inc.
stock over time. Arrows point to the years when the stock was added to the benchmarks.

Figure 2: Decomposition of the Benchmarking Intensity of Foot Locker Inc.

This figure plots the evolution of each index group within the benchmarking intensity of Foot Locker Inc. stock over
time. Index groups include blend, value, and growth indices.

in Panel (b) of Figure 6 in the Appendix. The BMI of FL is dominated by the inelastic demand
from active funds, even though the contribution of passive funds has grown. This illustrates another
important advantage of BMI – unlike passive ownership, a measure of institutional demand used
in the extant literature – the BMI accounts for the inelastic demand of active funds as well.

Table 1 documents descriptive statistics for BMI in our sample. S&P 500 stocks have the
highest average BMI, while membership in the Russell 2000 contributes the most to the BMI of an
average stock. The reported statistics also highlight the increasing heterogeneity of benchmarks for
U.S. equities: the average number of benchmarks increased from 7 to 10 and the concentration of
benchmark shares in BMI went down (as shown in Panel B). Together, value and growth indices are
at least as important as blend indices, contributing on average over 50% to the BMI. Furthermore,
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active funds contribute 83% to the BMI over the full sample period, even though their share declined
to an average of 65% in the recent 5 years.21

Table 1: Properties of benchmarking intensity

By time period By benchmark

Full
sample

1998-
2000

2001-
2006

2007-
2012

2013-
2018 S&P 500 Russell

1000
Russell

2000
Russell
Midcap

Russell
Value

indices

Russell
Growth
indices

Panel A: Descriptive statistics
Average BMI, % 15.4 10.2 15.2 17.1 15.5 19.6 16.3 17.5 16.6 16.9 17.2
St. dev. of BMI, % 8.9 5.2 5.8 9.3 10.7 6.4 7.1 8.0 7.6 7.9 7.6
Minimum BMI, % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum BMI, % 98.7 86.8 57.4 98.7 70.1 56.6 56.6 98.7 56.6 98.7 86.8
Average no. of benchmarks 9.0 7.5 9.0 8.3 10.0 9.7 11.0 9.5 11.4 10.5 10.6

Panel B: Average contribution of indices, %:
- S&P 500 8.5 9.7 9.6 9.7 6.3 53.5 26.1 0.2 17.8 9.5 8.3
- S&P 400 2.0 0.0 2.0 2.8 1.8 0.0 4.7 0.7 5.9 2.2 1.9

- Russell 1000 8.5 12.1 9.2 7.5 7.8 21.7 26.8 0.0 26.4 9.6 8.2
- Russell Midcap 7.4 6.7 8.1 9.2 5.8 12.6 23.3 0.0 29.1 7.4 8.2
- Russell 2000 50.6 49.4 53.0 56.3 44.6 0.7 0.0 79.5 0.0 53.1 52.6
- Russell 2500 8.5 11.5 10.6 8.8 5.7 1.3 6.2 10.2 7.8 7.7 10.3
- Russell 3000 6.1 10.5 7.5 5.8 3.8 5.9 7.4 5.9 7.2 6.3 6.4

- CRSP Large and Mid 0.4 0.0 0.0 0.0 1.2 1.6 1.3 0.0 1.5 0.4 0.4
- CRSP Small 1.5 0.0 0.0 0.0 4.3 0.1 1.6 1.6 2.0 1.6 1.5
- CRSP Total 6.5 0.0 0.0 0.0 18.7 2.4 2.5 2.0 2.4 2.3 2.1

Panel C: Average contribution of styles, %:
- blend 48.6 37.3 42.3 49.0 56.5 63.2 45.5 46.6 40.2 47.8 44.2
- value 25.3 25.1 25.1 27.3 23.5 20.6 28.0 25.6 30.9 38.9 11.7

- growth 26.1 37.6 32.5 23.7 20.0 16.1 26.5 27.8 28.9 13.2 44.1

Panel D: Average contribution of fund types, %:
- active 83.0 96.5 93.4 89.9 65.2 80.4 83.4 88.6 84.4 86.5 87.5

- passive (index and ETFs) 17.0 3.5 6.6 10.1 33.8 19.6 16.6 11.4 15.6 13.5 12.7

This table reports the descriptive statistics for benchmarking intensity. Columns ‘By time period’ show statistics for the respective period. Columns ‘By
benchmark’ show statistics for stocks that belong to the respective benchmark. BMI statistics (average, standard deviation, minimum, and maximum) are
in percentage points. Contribution is in percentage points. Contribution of indices is the average of the ratios of BMI coming from the AUM benchmarked
to an index to the total BMI of the stock. Contribution of indices is across index styles, e.g., line for the Russell 1000 includes blend, value, and growth.
Average number of benchmarks is for a stock. Averages are simple arithmetic means across stock-years.

BMI is not free of limitations. Empirically, we only observe benchmarks of the U.S. funds,
while U.S. firms have seen an increasing share of foreign owners. This implies that the BMI we
compute is a proxy of the true BMI which should include foreign funds benchmarked to U.S. stock
indices. We focus on mutual funds and ETFs but other investors, such as pension funds and
insurance companies, may also invest through benchmarked managers. Because BMI is additive
and only the numerator depends on AUM, the omission of foreign funds and other benchmarked
institutions scales BMI down. While we do not have data for assets under management across all
benchmarked institutions, we have checked data for separate accounts available in Morningstar.
The distribution of assets across benchmarks is remarkably similar to that for mutual funds, with
the exception of CRSP benchmark indices. It gives us some comfort that adding such benchmarked
institutions will maintain the cross-sectional ranking in our sample. On the theory side, we assume
21We exclude two stocks from our sample whose BMI exceeded 100% due to market values reported incorrectly in
CRSP. There are no stocks with BMI above 100% in our analysis sample in Section 3.3.2, that is, next to the
Russell cutoff.
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that there are no transaction costs and fund mandates only differ in the benchmark used. In
practice, however, trading is costly and funds may have other constraints, such as bounds on sector
exposure. This is expected to skew the weights used to compute BMI. We discuss the consequences
of considering trading costs at the end of Section 5.1.

3.3 Benchmarking Intensity and the Price Elasticity of Demand

In this section, we explore the relationship between the benchmarking intensity, the size
of the index effect, and demand elasticities. We exploit the cutoff between the Russell 1000 and
2000 indices, which separates stocks that are very similar in size and other characteristics but differ
significantly in terms of their benchmarking intensities.

3.3.1 The Russell Index Cutoff

The Russell indices undergo an annual reconstitution every June. All eligible stocks get
ranked based on their market cap value, and the top 1000 stocks get assigned to Russell 1000. The
ranking is based on a fixed date in May so any shock to a stock next to the cutoff can send it to
one or the other side.22 Figure 5 (a) in the Appendix plots index weights of stocks on the rank day
(May 31st) in 2006. All stocks to the right of 1000th rank cutoff in May are assigned to the Russell
2000 in June. To the left of the cutoff, stocks will have smaller index weights because they are the
smallest constituents of the value-weighted Russell 1000 index. Similarly, to the right of the cutoff
are the largest stocks of the Russell 2000 index, so their weight is high.

It is important to note that it is not the discontinuity in index weights at the Russell cutoff
that drives the variation in our benchmarking intensity measure.23 The averaged benchmarking
intensity plotted in Panels (b) and (d) of Figure 5 in the Appendix also has a discontinuity around
the Russell cutoff and it is larger for larger stocks. This pattern is, however, driven by stock
membership in different indices as well as the variation in the ratio of AUM to Index MV. The
latter is significantly larger to the right of the cutoff. Furthermore, larger stocks are more likely to
be in the S&P 500 and S&P 400 indices, which makes the curves downward sloping.24

In contrast to the literature, which typically accounts only for the Russell 1000 (blend) and
Russell 2000 (blend), we consider all nine Russell indices that contribute to the discontinuity at
the cutoff. These indices include the Russell 1000 (blend, value, and growth) and Russell Midcap
(blend, value, and growth) to the left of the cutoff and the Russell 2000 (blend, value, and growth)
to the right of it.25 Style funds (i.e., value and growth) have historically had a larger market share
22Extensive details on the Russell reconstitution are reported in Section A.9 of the Appendix. The introduction of
‘banding’ policy is discussed therein.

23If BMI of a stock were scaled differently, e.g., using total benchmarked AUM instead of the stock’s market value,
it would pick up the variation in index weights too.

24Even though S&P 500 is designed to represent 500 largest companies, we see that it includes some of the Russell
2000 stocks in our sample because of the differences in the S&P and Russell index construction methodologies. All
our results are robust to excluding changes in S&P and CRSP indices.

25This set does not include Russell indices that do not contribute to the discontinuity near the 1000/2000 cutoff.
These are, for example, Russell 3000, Russell 2500, and Russell Small Cap Completeness. However, all these indices
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on the Russell 1000 side of the cutoff, while blend funds have been more important on the Russell
2000 side. Moreover, we include funds benchmarked to the Russell Midcap – an index that spans
stocks smaller than rank 200 within the Russell 1000. It assigns a higher weight to the stocks near
the cutoff than the Russell 1000 index because it excludes its 200 largest constituents. The AUM
of funds benchmarked to the Russell Midcap in our sample is almost as high as that of all Russell
2000 funds (Figure 4 and Table 11 in the Appendix).

Due to the updated reconstitution methodology, since 2007 there is a market value region
in which both Russell 1000 and Russell 2000 stocks are present. Figure 5 (c) in the Appendix plots
the index weights around the cutoffs on the rank day (May 31st) in 2012. In that year, the band
is between ranks 823 and 1243. The discontinuity is still apparent: Russell 2000 stocks (in grey)
have higher index weights. BMI mirrors the new pattern due to higher AUM/IndexMV ratio of the
Russell 2000 indices: the curve for Russell 2000 stocks lies above that for the Russell 1000 (Figure
5 (d) in the Appendix).

What we exploit in most of our analysis is the increase in BMI for stocks added to the
Russell 2000 or the decrease in BMI for stocks just deleted from it. We argue that this variation is
exogenous in Section 3.3.4.

We use a local linear regression approach, i.e., our samples are restricted to the neighborhood
of the cutoff (rectangular kernel). Our default bandwidth is 300 stocks around the cutoff and we
report the robustness with respect to this choice for all our tests. For the period up to 2006, the
cutoff rank around which we center the analysis is 1000. For each year starting from 2007, we
compute the left and right cutoffs based on the Russell methodology.26

We also exclude stocks that move more than 500 ranks in one year. Our results are not
sensitive to this filter but we prefer to keep it in place to ensure the comparability of stocks.

3.3.2 BMI and Index Effect

In this section, we show that a higher benchmarking intensity change leads to a larger price
pressure (short-term return) upon an index inclusion event. This corresponds to Prediction 2 of our
model. We first confirm the result in the literature that, on average, stocks added to the Russell
2000 index experience a positive return in June. Second, we present novel results suggesting that
the size of the index effect is linked to the change of a stock’s BMI in the cross-section.

Similarly to Chang, Hong, and Liskovich (2015), we see a positive return upon addition
to the Russell 2000 and a negative return following deletion from it in our data.27 Identification
details and estimation results are presented in Table 13 in the Appendix.

Next, we show stocks with larger changes in BMI experience higher returns in June. We

are still accounted for in the BMI, they just do not contribute to the discontinuity.
26Market value levels for the cutoffs we compute are reported in Table 8 in the Appendix, we almost fully
match historical values reported by Russell on the website: https://www.ftserussell.com/research-insights/russell-
reconstitution/market-capitalization-ranges.

27We get lower magnitudes due to using proprietary ranking variable and a different methodology.
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estimate the following specification:

RetJuneit = α∆BMIit + ζlogMVit + φ′BandingControlsit + ξF loatit + δ′X̄it + µt + εit. (7)

In this specification, RetJuneit is the return of stock i in June of year t,28 winsorized at 1%. ∆BMIit

is the difference between the BMI of stock i in May of year t and its BMI in June of the same year.29

As we discuss later in Section 3.3.4, conditional on logMV , BandingControlsit and Floatit in May,
the change in BMI due to the Russell reconstitution is exogenous. logMVit is the logarithm of total
market value, the ranking variable as of May provided by Russell.30 BandingControlsit include
dummies for being in the band, being in the Russell 2000, and their interaction in May of year
t− 1. Floatit is the Russell float factor, a proprietary liquidity measure affecting index weight. X̄
is a vector consisting of: 5-year monthly rolling βCAPM computed using CRSP total market value-
weighted index and 1-year monthly rolling average bid-ask percentage spread. We include βCAPM

because, as implied by our model, it affects expected returns. We supplement the controls with
bid-ask spread to account for any stale information in the float factor. µt are year fixed effects. In
the baseline analysis, we perform this estimation for all stocks within 300 ranks around the cutoff.

Estimation results are presented in Table 2. Consistent with our model’s Prediction 2,
price pressure is the highest for stocks experiencing the largest increase in BMI, all else equal.
Specifically, a 1% increase in BMI leads to a 27bps higher return in June. To better understand the
magnitudes, we report the estimates of price pressure in quartiles of BMI change. A stock in the
top quartile has an 80bps higher return in June relative to an average stock in that year, while a
stock in the bottom quartile has a 110bps lower return. These magnitudes are consistent with the
average index effect size we get with a dummy approach in Table 13 in the Appendix. The results
are robust to alternative specifications and band widths31 as well as using a deflated version of the
change in BMI.32

28Consistent with Chang, Hong, and Liskovich (2015), June is the month when we expect the price pressure due to
the Russell reconstitution. In Section 3.3.4, we also consider quarterly return, for April-June.

29Here we consider the total change in BMI. Table 17 in the Appendix uses change in BMI only from the Russell
indices that have the same cutoff. The correlation between the baseline change in BMI and the change in BMI from
the Russell indices is 93.2%. Furthermore, Appendix Table 18 uses the baseline change in BMI but excludes stocks
that contemporaneously moved S&P and CRSP indices. The magnitudes are very similar. In future research, it is
useful to be aware that there might be significant changes in BMI due to switches in other indices, especially if one
studies other index cutoffs.

30One useful alternative to the proprietary Russell market value is a ranking variable constructed by Ben-David,
Franzoni, and Moussawi (2019) for Ben-David, Franzoni, and Moussawi (2018) using standard stock databases.

31Column (1) in Table 2 only includes controls specific to the Russell index membership (logMV and banding
controls). Column (3) adds stock fixed effects. Estimates for narrower bands are presented in Table 15 in the
Appendix. In unreported analysis, we ran the regression with terciles and quintiles of BMI change instead of
quartiles and the results are similar.

32As discussed above, prices do not enter BMI. However, to alleviate any concern about the mechanical relationship
between returns in June and change in BMI, we report the estimates of (7) using deflated change in BMI in Table 16
in the Appendix. Specifically, deflated BMI is computed using index composition in June but with May prices; that
is, it accounts for the new index membership of stock i but not its return in June. Estimates are not significantly
different from those in Table 2.
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Table 2: BMI change and return in June

Return in June ∆BMI, %
(1) (2) (3) (4) (5) (6)

∆BMI 0.26** 0.27** 0.28**
(2.55) (2.66) (2.74)

1(∆BMI quartile 1) -0.010*** -0.010*** -3.02
(-3.41) (-3.39)

1(∆BMI quartile 2) -0.004** -0.005*** -0.39
(-2.16) (-2.67)

1(∆BMI quartile 3) 0.006*** 0.005*** 0.49
(3.62) (3.50)

1(∆BMI quartile 4) 0.008** 0.009*** 3.24
(2.26) (2.64)

Fixed effect Year Year Stock & Year N N
X̄ controls N Y Y N Y
Observations 14,549 14,549 14,549 14,549 14,549
Adj. R2, % 17.1 17.5 19.2 1.3 1.8

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018). The dependent
variable is the winsorized return of stock i in June in year t (in columns (1)-(3) and demeaned by year in (4)-(5)). The
independent variable is ∆BMIit, the change in the BMI of stock i between June and May of year t, or the dummies for
its quartiles. All regressions include logMV (the logarithm of proprietary total market value), Float (proprietary float
factor), BandingControls (being in the band, being in the Russell 2000 and their interaction in May). Columns (2), (3)
and (5) include controls in X̄ (βCAP M and bid-ask spread). All controls are demeaned by year in columns (4)-(5). The
constant is excluded. Band width is 300 around both cutoffs. The last column reports the mean percentage ∆BMIit in
each quartile. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance
levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

Therefore, in contrast with the existing literature which looks at the average index effect
for stocks added to the index or deleted from it, our analysis suggests that the size of index effect is
proportional to the stock’s BMI change.33 It is a natural result because, as we show in the following
section, the change in BMI, in fact, allows us to compute the price elasticity of demand.

3.3.3 Implications for the Price Elasticity of Demand

Our heterogeneous benchmarks model has nontrivial implications for the stock price elas-
ticity of demand. Even though this parameter enters many macroeconomic models, the literature
offers a rather wide range of its estimates (e.g., Wurgler and Zhuravskaya (2002)) and sometimes
focuses on the demand curves of different groups of investors. Importantly, previous research has
studied single stock demand curves using only one benchmark (starting from Shleifer (1986)) and,
in most cases, assumed that only passive managers (index funds and ETFs) have inelastic demand.
33Greenwood (2005) and Wurgler and Zhuravskaya (2002) perform a cross-sectional analysis for one benchmark and
show that arbitrage risk is positively associated with the index effect for Nikkei 225 and S&P 500 stocks, respectively.
Motivated by their work, we explore implications of arbitrage risk, as proxied by stock idiosyncratic volatility or
short interest, for our results. We also find that the larger the arbitrage risk, the higher the index effect. Controlling
for either of these proxies does not change the economic or statistical importance of BMI.
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For the experiment below, consider a one-stock version of our model (N = 1). Additionally,
to fix ideas, we separate fund managers into active and passive ones, as in footnote 13.

Most of the existing literature implicitly assumes that active investor demand (correspond-
ing to benchmarked active managers and direct investors in our model) is fully elastic. If it is the
case, the change in passive investor demand due to index reconstitution can be used as a shock
to the supply of shares available to the rest of the market (effective supply). This is illustrated
in Figure 3 (a). When the passive investor demand increases, the effective supply reduces from
θ̃0 to θ̃1, and the new equilibrium price is higher, S1 > S0. Using the change in passive bench-
marked assets that corresponds to θ̃1− θ̃0 and the size of the index effect, i.e., (S1−S0)/S0, allows
us to measure the price elasticity of demand of the rest of the market, typically computed as
(θ̃1 − θ̃0)/(S1 − S0)× S0/θ̃0. We refer to the demand of the rest of the market as residual demand.

In our model, however, the standard approach will not recover the price elasticity of demand.
The demand of passive managers benchmarked to index j for any particular stock is fully inelastic:
θPj = ωj . Then, the effective supply of shares available to benchmarked active managers and direct
investors is θ̃ = θ̄−

∑
j λ

P
j ωj . Due to benchmarking, the aggregate demand function of benchmarked

active managers and direct investors features an inelastic component, the last term in the equation
below.

ΘActive+Direct = 1
γ
A−1Σ−1(D̄ − S) + b

a+ b

∑
j

λAj ωj .

This equation as a function of S represents the demand curve in Figure 3 (b). With benchmarking,
an index inclusion event will not only trigger a parallel shift in effective supply to the right but
also an upward parallel shift in residual demand. As illustrated in Figure 3 (b), the observed
price pressure will be (S1 − S0)/S0, not (S′1 − S0)/S0. If we use the former price pressure with
the change in passive demand to compute elasticities, we will conclude that the residual demand
curve is steeper than it actually is. Therefore, if the world is close to our model economy, using
the benchmarked passive asset change and the observed price pressure does not deliver the correct
estimate of the price elasticity of demand. As shown in Section 4, active managers indeed have
inelastic demand for stocks in their benchmarks and constitute, on average, 80% of asset managers
in our sample.

18

Electronic copy available at: https://ssrn.com/abstract=3689959



Figure 3: Demand Curves and Index Effect

(a) Only passive demand is inelastic

(b) Inelastic component in active demand (c) Using BMI to shift effective supply

This figure illustrates index reconstitution implications when (a) only passive investors’ demand reacts inelastically,
(b) active investors also have inelastic component in demand function, and (c) when BMI change is used to shift
effective supply. Effective supply in (a) and (b) is the total supply of shares, θ̄, minus the holdings of passive managers.
In (c), it additionally excludes the inelastic component of holdings of active managers. Residual demand is the total
demand of the rest of the market, i.e., (elastic) active managers and direct investors.

What is the appropriate way to compute elasticity? One could separate elastic and inelastic
components of active managers’ demand and subtract the latter from the effective supply: θ̃′ =
θ̄ −

[∑
j λ

P
j ωj + b

a+b
∑
j λ

A
j ωj

]
. But in the data, we normally do not observe these components

individually. In our model, however, BMI is exactly ∑J
j=1

[
λPj ωj + b

a+bλ
A
j ωj

]
. In other words, the
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change in BMI due to an index reconstitution event directly measures the shift in effective supply
resulting from the inelastic response of both passive and active managers.34 This is illustrated in
Figure 3 (c). The difference between the solid green and dashed green lines is the total change
of effective supply due to the inelastic demand of both active and passive managers. Since this
change in BMI is observable, it allows us to trace the correct slope of the residual (elastic) demand
function.

The BMI-based estimate of elasticity can be derived from Table 2. Since RetJune/∆BMI =
0.27, the corresponding price elasticity of demand is −1/0.27 = −3.7. This estimate is an upper
bound for elasticity because our calculation of BMI is based on b

a+b = 1.35 Our estimates are
regression-based, we also compare them with those computed in Chang, Hong, and Liskovich (2015)
in Appendix A.22, which are based on averages.

Importantly, the heterogeneity of benchmarks has significant quantitative implications for
the measures of elasticity relative to a single-benchmark case. Appendix A.22 shows that the BMI
change is the same as the change in total benchmarked assets used by Chang, Hong, and Liskovich
(2015) only if a stock does not enter any benchmark other than the Russell 1000 and 2000 and
if all its shares are floated. The literature has not considered the demand that stems from such
large indices as the Russell 1000 Growth and Russell Midcap,36 and hence the change in demand
is typically mismeasured. As shown in Table 23 in the Appendix, accounting for all benchmarks in
the same sample and with the same price pressure estimate as in Chang, Hong, and Liskovich, we
obtain elasticity of -1.02 (30% less elastic than -1.46 in their paper).

Our estimates of the price elasticity of demand in this section should be viewed as an upper
bound for several reasons. First, as explained above, our baseline calculation of the change in BMI
assumes the strongest benchmarking incentives for active funds, i.e., we use b

a+b = 1. For any
other b

a+b ∈ (0, 1), the change in BMI is lower and, therefore, elasticity is lower as well. We discuss
sensitivity of our results to and provide a range of emprical estimates for b

a+b in Section 3.3.5.
Second, our estimates are based on the total change in BMI, which is larger than the unanticipated
change in BMI, as explained in Section 2 and Appendix B. If we could measure and use this
34Data on manager compensation are generally not available. The only estimate of b

a+b in the literature is provided
in Ibert, Kaniel, Nieuwerburgh, and Vestman (2018) on Swedish data, which exhibits structural differences to the
US. We assume that b

a+b = 1 in our main results but also provide a sensitivity analysis to this ratio below.
35This implies that active managers are strongly concerned about relative performance and the sensitivity of their
compensation to absolute performance, a, is small. If a is higher, the inelastic component constitutes a smaller
fraction of their demand for risky stocks. Therefore, they contribute less to the overall inelastic demand in the
economy. In the language used in this section, it means that the shift in effective supply of a stock due to an index
inclusion is smaller. In our calculation, the corresponding change in the stock’s price is fixed, as estimated in the
data. Hence, the same change in price is associated with a smaller change in demand, resulting in lower elasticity
of residual (elastic) demand. For example, for b

a+b = 0.6 and b
a+b = 0.8, the price elasticity of the residual demand

would be -2.50 and -3.13, respectively. If the shift in the dashed green line in Figure 3 (c) is smaller, the residual
demand curve (red line) must be steeper to result in the same (observed) price change. We discuss sensitivity of
our results with respect to b

a+b in more detail in Section 3.3.5.
36Benchmarked assets of the Russell indices are shown in Table 11. Russell Value and Growth indices are even larger
than blend indexes in terms of the assets benchmarked to them. Moreover, since the Russell Midcap represents the
smallest 800 stocks in the Russell 1000, the stock would exit it too. The size of the investor base of the Russell
Midcap is just as large as that for the Russell 2000. It is therefore surprising that most of the literature studying
the Russell cutoff has not taken all these indices into account.
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unanticipated change in BMI, we would get even lower elasticity estimates. We demonstrate that
in Section 3.3.5 and provide some evidence and further discussion in Appendix A.19. Finally, not
all of the changes in stocks’ BMI, a theoretical measure, translate into changes in actual fund
ownership. In practice, fund managers incur transaction costs, which often prevents them from
trading as our frictionless model would predict. In the section that follows, we address this by
providing estimates of the actual price impact, using ∆BMI as an instrument for stock ownership.

3.3.4 BMI as an IV

In this section, we estimate price impact of benchmarked investors’ trades by examining
directly how changes in their ownership of a stock affect the stock’s price. Of course, as our theory
illustrates, stock ownership and prices are jointly determined in equilibrium. In this section, we
address this identification challenge with an instrumental variable approach. We propose to use
changes in BMI—a measure of inelastic demand that a stock attracts—as an instrument for changes
in institutional ownership.37 Changes in BMI should therefore predict how benchmarked investors
rebalance their portfolios in response to a Russell index reconstitution (relevance condition). Intu-
itively, a change in BMI acts as a shock to the effective supply of a stock.

Our best proxy for the total ownership of a stock i at time t by benchmarked investors is
institutional ownership, available from the Thomson Reuters Institutional Holdings (13F) Database,
which reports total institutional holdings. Institutional ownership is defined as

IOit =
∑J̄
j=1 λjtθijt

MVit
, (8)

where θijt denotes the actual weight of stock i held by institutional investor j and J̄ is the total
number of institutional owners. The definition in (8) mirrors that of our BMI (equation (5)), except
that it has actual portfolio weights θijt as opposed to benchmark index portfolio weights ωijt. We
acknowledge that IOit also contains holdings of non-benchmarked institutional investors, but as
long as our instrument is sufficiently strong, this should not pose a problem for our estimation.

We would like to estimate the following structural equation:

RetJuneit = α∆IOit + εit, (9)

where RetJuneit is stock i’s return in June of year t, winsorized at 1%, and ∆IOit is the change in
institutional ownership measured from March until June of year t.

The problem with estimating equation (9) by OLS is that the change in institutional owner-
ship ∆IO is an equilibrium object and hence is endogenous. We therefore expect the OLS estimate
of α to be biased.38 To overcome this problem, we use an instrumental variable approach. Specif-
37We thank Moto Yogo for this insight, which has inspired this section.
38If in our data supply shocks dominate, we expect the estimate of β in a regression of prices on quantities, P = βQ+ε,
to be positive, and negative if demand shocks dominate. If Q included only supply shocks, we could use OLS
regression to measure the true price elasticity of demand. However, since Q in our setup is likely to include demand
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ically, we use ∆BMI as an instrument for the change in effective supply of the stock. The main
threat to this identification strategy is the presence of the index membership dummy in the ex-
pression for BMI (6), because index membership is potentially endogenous. However, there is a
large literature that uses membership in the Russell 2000 index as an instrument for institutional
ownership in a similar setting (e.g., Crane, Michenaud, and Weston (2016) and Glossner (2021)).39

This literature argues that, after controlling for factors that determine index inclusion, most im-
portantly for the ranking variable (logMV ) that Russell uses for index assignment at the end of
May, the index membership dummy is exogenous. In Section 3.2, we have also acknowledged our
concern that a change in stocks’ liquidity could be a potential source of endogeneity of ∆BMI (due
to stocks’ float factors entering the expression for BMI), and to address that concern we control
for the Russell proprietary stock-level float factor as of May. Finally, Appel, Gormley, and Keim
(2019) advocate including banding controls, and we do so in our specification.40

Armed with the instrument and a set of controls, we perform the following two-stage least
squares estimation. The first-stage regression is

∆IOit = α1∆BMIit + ζ1logMVit + φ′1BandingControlsit + ξ1Floatit + δ′1X̄it + µ1t + εit. (10)

The second stage is

RetJuneit = α∆̂IOit + ζlogMVit + φ′BandingControlsit + ξF loatit + δ′X̄it + µ2t + ηit. (11)

logMVit is the logarithm of total market value, the ranking variable as of May provided by Russell,
Floatit is the Russell float factor, µ1t and µ2t are year fixed effects, and X̄it and BandingControlsit
are the vectors of controls, as specified before. We perform the estimation in the neighborhood of
300 ranks around the cutoffs. By estimating this model, we aim to uncover the price impact of the
actual change in institutional ownership, which is typically different from what is predicted based
on ∆BMIit. In reality, institutional investors do not hold all stocks in their benchmarks due to,
for example, trading costs, from which our model abstracts.

The reason why we are reluctant to use mutual fund and ETF ownership instead of insti-
tutional ownership in (10) is that a change in BMI due to index reconstitution should affect all
benchmarked institutional investors (e.g., pension funds), not only mutual funds and ETFs, and
therefore the exclusion restriction that ∆BMI affects the outcome variable only through changes
in fund ownership is potentially violated.

To further alleviate concerns about the possible endogeneity of ∆BMI, we conduct overi-
dentifying restrictions tests. Specifically, we use two instruments in the first-stage regression (10):
∆BMI and DR2000, with the latter being the index membership dummy used as an instrument for

shocks, the regression will not produce a true coefficient β and the estimate will be biased towards zero.
39The consensus in this literature is that Russell 2000 membership dummy is a weak instrument for institutional
ownership, which we confirm below.

40There is one cutoff, at rank 1000, before 2007, and two cutoffs afterwards. We explain this in detail in Section 3.3
above.
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institutional ownership changes in the related literature cited above. Since with two instruments
our model is overidentified, we can implement the Hansen J test. If the model with two instruments
passes the J test, we can view this as statistical evidence that ∆BMI is (conditionally) exogenous.

Table 3 reports our results. First, it is clear that the OLS estimate of the effect of the
change in institutional ownership on stock returns is biased. We therefore focus on the 2SLS
estimates. The reported F-statistics indicate that the first stage specifications with one (∆BMI)
and two instruments (∆BMI and DR2000) are both strong. The reason for the higher t-statistic
on ∆BMI relative to that on the dummy is that the former offers continuous treatment, while
the dummy is a coarse binary variable. Consistent with this observation, the F-statistic of the
first-stage regression, in which we include only the index membership dummy DR2000 and not
∆BMI, is lower than the conventional value of 10.41 Although it is a coarse instrument, the index
membership is conditionally exogenous and hence we are able to run the test of overidentifying
restrictions to determine whether ∆BMI is a valid instrument. With a p-value of 19%, the Hansen
J test cannot reject the null that that both of instruments are exogenous (conditional on logMV

and other controls).42

Table 3: Change in BMI as an instrument for change in institutional ownership

Return in June, % Return in
April-June, %

OLS 2SLS
(1) (2) (3) (4) (5)

Panel A: Second-stage estimates
∆IO, % 0.09*** 2.27 1.46** 1.47** 2.26**

(3.75) (1.44) (2.55) (2.57) (2.80)
Panel B: First-stage estimates
∆BMI, % 0.20*** 0.19*** 0.19***

(5.90) (6.34) (6.43)
DR2000 0.85*** -0.15

(2.78) (-0.54)

F-Stat (excl. instruments) 7.73 20.07 40.20 41.41
Hansen J test, p-value 0.19

Controls Y Y Y Y N
Observations 12,862 12,862 12,862 12,862 12,862

This table reports α1 and α from estimating (10) and (11), respectively, in the full sample period (1998-2018). Band
width is 300 stocks around the cutoffs. The dependent variable is return in June. ∆IO the change in total institutional
ownership of stock i from March to June in year t. Specifications in (1)-(4) include logMV (the logarithm of proprietary
total market value), Float (proprietary float factor), BandingControls (being in the band, being in the Russell 2000 and
their interaction in May), X̄ (βCAPM and bid-ask spread), and year fixed effects. Specification in (5) includes year fixed
effects only. Hansen J test is performed under the assumption of HAC disturbances. In parenthesis are t-statistics based
on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

41See Stock and Yogo (2002) for details.
42This is a conservative p-value as the J test is run under the assumption of heteroscedastic and autocorrelated (HAC)
disturbances.
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The estimates of the price impact in the specifications with one and two instruments are
essentially the same, given by 1.47.43 It is instructive to compare our estimates to those in the
related literature. Recent papers using the demand system approach to asset pricing, proposed
in Koijen and Yogo (2019), estimate price impact at an investor group level. Koijen and Yogo
document that the aggregate price impact varies over the business cycle and ranges from 2 to 4.
Our estimates in Section 3.3.3, obtained via a different method, are within their confidence intervals.
The estimate in this section corresponds to the price elasticity of demand of households (owners
residual to institutions whose market share is about 30%) of 1/1.47 ∗ 1/30% = 2.26. It is slightly
higher than the elasticity in Koijen and Yogo (2019), which is closer to 1. A potential argument for
the difference is that we are performing our estimation in a small neighborhood around the Russell
1000/2000 cutoff, and stocks close to this cutoff are more substitutable in investor portfolios than
large stocks like Apple and Microsoft.44 In general, demand of the remaining investors in the market,
primarily households and some hedge funds, which in our model are represented by direct investors,
is quite elastic because they do not face institutional constraints or compensation contracts that
introduce inelastic elements in their demand functions.

One may question our analysis by saying that the price impact should be driven by the
unanticipated change in BMI, i.e., ∆BMI − E∗[∆BMI], as opposed to ∆BMI, as explained in
Section 2 and Appendix B. Our approach to estimating demand elasticities in this section is robust
to this criticism. As long as ∆BMI is a valid instrument, our estimates of the demand elasticity
of households should not change.

One drawback of the above approach to estimating price impact is that 13F institutional
ownership is not observed at a monthly frequency, and so the periods over which we measure returns
and changes in ownership are not perfectly aligned. An advantage is that this variable accounts
for any rebalancing in anticipation of changes in BMI, but for the purposes of measuring price
impact, we would have liked to use the change in ownership in June. For robustness, we also run
a specification, in which as a dependent variable we use stock return from April to June, that is,
for the same period as the change in ownership. In this specification, however, we cannot use our
proprietary controls as they already reflect returns in April and May, and so we drop them. We
report the estimated price impact in Table 3, column (5), and it is not statistically different from
our main estimate in column (4).45

Some of the discrepancy between the ownership predicted by BMI and the actual ownership
is driven by so-called optimized sampling. Optimized sampling is a portfolio construction technique
43Our estimates are similar for a narrower band width. We report them in Table 20 in the Appendix.
44If we estimate specification (10)–(11) using changes in mutual fund and ETF ownership as opposed to changes in
institutional ownership, we get a higher estimate of price impact, around 2.6. However, this estimate should be
treated with caution because it attributes all of the price impact to mutual funds and ETFs, while some of it may
come from other benchmarked institutional investors, such as pension funds, etc.

45In Table 21 in the Appendix, we report estimation results for specifications in columns (1)-(4) of Table 3 but
without controls. The coefficients are lower but not statistically different. Furthermore, it is the banding controls
and logMV that are important for the magnitude of the coefficient. These are Russell’s proprietary variables that
we use to ensure conditional exogeneity. Accordingly, the Hansen J test rejects the model when they are removed.
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in which ex ante tracking error is balanced with expected transaction costs.46 It directly interferes
with the incentives to hold the benchmark portfolio. In the presence of transaction costs, funds
no longer hold benchmark securities proportionally to benchmark weights. Rather, they typically
hold the largest stocks with benchmark weights, completely omit the smallest and some mid-range
stocks, and overweigh most of the mid-range stocks (see the illustration in Figure 7 in the Appendix).
Optimized sampling done by active funds is reflected in lower b

a+b . If some passive funds were to
engage in optimized sampling (Appendix Figure 8 illustrates such a case), that would make the
coefficient for passive AUM lower than 1. Therefore, optimized sampling is another reason why our
estimates of price impact represent a lower bound.

3.3.5 BMI Adjusted for Fund Activeness

In our baseline BMI in (5), we treat passive and active funds symmetrically. Our model,
however, implies that passive and active funds should contribute to BMI differently. The weighted
BMI is

BMIw = BMIPassive + b

a+ b
BMIActive. (12)

As earlier, BMIPassive = ∑
j λ

P
j ωj and BMIActive = ∑

j λ
A
j ωj (see footnote 13 and Section 3.3.3).

The parameter b
a+b measures fund activeness. It is equal to zero for a fund that does not have any

benchmarking (b = 0) and equals to one in the limit of b → ∞ (the fund is a ‘closet indexer’).
Parameters a and b come from the fund manager’s compensation contract. Unfortunately, detailed
data on compensation contracts of U.S. mutual fund managers is not available, and contract details
documented in Ma, Tang, and Gómez (2019) are not sufficient to pin down b

a+b . We therefore
attempt to determine b

a+b from theory and based on a revealed preference argument (i.e., fund
managers’ observed portfolio choice). In the main text, we do so for the weighted BMI implied by
our model (equation (12)), and in Appendix C, we generalize the model and consider active fund
manager heterogeneity.

We first explore how our aggregate elasticity estimates change as we vary b
a+b . Table 4

presents the sensitivity of price impact α in equation (7) to the values of b
a+b ∈ [0, 1]. As we

decrease b
a+b , the overall shift in effective supply is smaller, so for the same fixed change in stock

price, the estimate of price impact has to go up. This is exactly what we see in the table. The
point estimate for b

a+b = 0 is slightly lower than that for b
a+b = 0.2 but not statistically different.

In unreported tests, we confirm that this non-monotonicity in Table 4 is most likely due to the
small relative size of passive AUM tracking the Russell indices at the beginning of our sample (only
2% of all AUM) and disappears if we restrict the sample to after 2001.

At the end of Section 3.3.3, we have highlighted that using the total as compared to unan-
ticipated change in BMI will have implications for the price impact estimates. In Table 4, we
therefore report the price impact estimates for both the total change in BMI and unanticipated
46In practice, transaction costs are an important consideration. Not buying an asset in the benchmark saves on trans-
action costs but increases the manager’s tracking error relative to the benchmark. Optimized sampling addresses
this trade-off.
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change in BMI. It is challenging to accurately measure ∆BMI − E∗[∆BMI], that is, how much
of the BMI change is not anticipated, and in Table 4 we assume that it is around 50% of the total
change, ∆BMI.47 This effectively increases price impact by a factor of 2. If the future literature
is able to pin down this unanticipated component, our estimates can be scaled accordingly. Our
goal in Table 4 is simply to give a plausible set of estimates that account for anticipated changes
in BMI.

Table 4 gives a useful insight into the effect of the parameter b
a+b on the estimate of price

impact. However, it does not pin it down. One way to pin down the level of b
a+b is to rely on

a theoretical argument, coupled with a calibration. Kashyap, Kovrijnykh, Li, and Pavlova (2021)
use data on institutional ownership of the S&P 500 and the total market index in 2017 as well
as standard asset pricing moments to calibrate an economy similar to ours, but without passive
managers. They find that b

a+b is 0.82 in their economy. This number should be translated into
a weighted average of 1 for passive assets and b

a+b for active, implying that b
a+b = 0.72 in our

economy. Furthermore, when endogenizing contract parameters a and b, Kashyap, Kovrijnykh, Li,
and Pavlova (2020) show that, with imperfect risk sharing, b

a+b lies between 0.5 and 1.

Table 4: BMI change and return in June, varying b
a+b

α estimate Implied elasticity
b

a+b ∆BMIw 0.5×∆BMIw t-statistic Adj. R2, % ∆BMIw 0.5×∆BMIw

(1) (2) (3) (4) (5) (6)

1.0 0.27** 0.54** (2.66) 17.53 -3.69 -1.85
0.8 0.32** 0.65** (2.64) 17.51 -3.09 -1.54
0.6 0.40** 0.81** (2.62) 17.49 -2.48 -1.23
0.4 0.53** 1.06** (2.58) 17.44 -1.89 -0.94
0.2 0.74** 1.47** (2.50) 17.34 -1.36 -0.68
0.0 0.72** 1.45** (2.29) 17.04 -1.38 -0.69

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018) using different
weights b

a+b when computing ∆BMIw. Specification is as in Column (2) of Table 2. The dependent variable
is the winsorized return of stock i in June in year t. The independent variable is ∆BMIw

it in Column (1) and
0.5 × ∆BMIw

it in Column (2). Values in Columns (3) and (4) are the same for estimates in Columns (1) and
(2). Columns (5) and (6) report the aggregate elasticities implied by the estimates of α in Columns (1) and (2),
respectively, computed as −1/α̂. t-statistics are based on standard errors double-clustered by stock and year.
Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

In Appendix Table C7, we report our IV-based price impact estimates from Section 3.3.4
for different values of b

a+b ∈ [0, 1]. We expect them to be the same if ∆BMI is a good instrument.
We find that the estimates are very similar for b

a+b > 0.4. Some discrepancy below that level
comes from the low fraction of passive AUM in the early part of the sample. Furthermore, the
explanatory power of our instrument for institutional ownership, as measured by the first-stage R2,
47In Appendix A.19, we provide suggestive evidence for anticipatory price pressures in months before the reconstitu-
tion, demonstrating that at least some part of the total change in BMI is expected by the markets.
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is maximized for the values of b
a+b between 0.4 and 0.6.

In Appendix C, we additionally allow for active fund manager heterogeneity. In our model,
there is a complicated non-linear relationship between any conventional measure of activeness,
such as e.g., Active Share (Cremers and Petajisto (2009)), and b

a+b . Because of this, we instead
use a measure from the following regression approach. Specifically, we estimate a coefficient in the
regression of fund portfolio weights on its benchmark portfolio weights, to parallel equation (2).
We find that the AUM-weighted average coefficient for all active funds is 0.57.48 At the same time,
the coefficients monotonically increase from 0.23 to 0.72 for similarly sized groups of funds ranked
by their Active Share. This is consistent with the variation in Active Share itself that Cremers
and Petajisto document. As is, such a regression suffers from endogeneity, which may be caused
by excluding the mean-variance portfolio (the first term in equation (2)) or other potential stock-
level time-varying characteristics that are not present in our model, such as liquidity, that may
simultaneously affect benchmark and portfolio weights. That is why the reported estimates should
be interpreted as correlations. There are several further disadvantages of using these estimates as
inputs to the weighted BMI, which we discuss in detail in Appendix C. With the currently available
compensation data and caveats to our empirical approach to evaluating b

a+b , we cannot do justice
to active funds heterogeneity in BMIw in this paper. One alternative avenue to pursue would
be to employ the demand-system approach of Koijen and Yogo (2019) to estimate heterogeneous
parameters b

a+b , fund-by-fund. This estimation approach is structural and it requires an investor-
level specification of demand curves. The additional feature of the demand curves in our model,
relative to those in Koijen and Yogo, is the presence of benchmark-tracking concerns in equation (2).
One could generalize the Koijen and Yogo’s empirical specification to capture these additional
elements along the lines of Koijen, Richmond, and Yogo (2021). We leave this analysis for future
research.

Our preferred weighted BMI specification is the one without heterogeneity across active
funds, for several reasons. First, the only heterogeneity in our model is between passive and active
funds. The second consideration is parsimony. Finally, we need to rely on considerably fewer
assumptions to compute it, making our measure more transparent and easier to replicate (e.g., we
do not need to assume a specific distribution of b

a+b across active funds or estimate this parameter,
which adds noise and limits our sample because holdings data are not available for all funds). While
our investigation in Appendix C suggests considerable heterogeneity across active funds, if one were
to commit to an estimate of b

a+b of a representative active fund, it would be around 0.57.
Finally, in Appendix C, we fully explore how our results change under the assumption

of heterogeneity between active and passive funds, as in equation (12). We re-estimate all our
empirical specifications (in Sections 3.3.1 and 3.3.4) using two values of b

a+b : (i) a theory-implied
calibrated value of b

a+b = 0.72, based on Kashyap, Kovrijnykh, Li, and Pavlova (2021), and (ii) an
empirical one, based on our estimated average sensitivity of fund weights to benchmark weights
( b
a+b = 0.57). In brief, the results of the re-estimation are as follows. The price impact estimates

48AUM weighting is implied by our model. Estimates from an OLS regression are similar. See Appendix C for details.
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from the re-estimated Table 2 are higher (meaning that demand elasticities are smaller), due to a
lower quantity change (∆BMIw < ∆BMI) for the same price change. We would not expect the
IV-based elasticity estimates to change, and indeed they are virtually the same as in the main text
(Table 3).

4 Benchmarking Intensity and Fund Ownership

Starting from Gompers and Metrick (2001), empirical literature documented a range of
effects of institutional trading and ownership on stock prices. A recent strand of literature looks
into the effects of ownership on corporate outcomes. There has been little research, however, on
benchmarking-induced ownership.

Benchmarking intensity reflects the incentives elicited by the contracts of asset managers,
both active and passive. In this section, we show that both investor types have a considerable frac-
tion of holdings concentrated in their benchmarks and that they rebalance stocks relevant for their
benchmarks around the Russell cutoffs. That is, we document a heterogeneity of investor habitats
dictated by their benchmarks, reflecting their inelastic demand for stocks in these benchmarks.

4.1 Net Purchases of Index Additions and Deletions

Earlier studies documented that index funds and ETFs buy additions to and sell deletions
from their benchmarks. We argue that this list is incomplete and that active managers engage in
the same behavior but detecting it requires granular data on their benchmarks.

In order to see which funds rebalance additions and deletions, we estimate the following
equations at a stock level, which in changes is:

∆Ownijt = α1jD
R1000→R2000
it + α2jD

R2000→R1000
it + ζjlogMVit + ξjFloatit + δ′jX̄it (13)

+ µjt + εijt,

and in levels is:

Ownijt = αjD
R2000
it + ψjOwnijt−1 + ζjlogMVit + φ′jBandingControlsit + ξjFloatit (14)

+ δ′jX̄it + µjt + εijt.

In the above equations, DR1000→R2000
it is 1 when stock i is moved from the Russell 1000 to Russell

2000 on the reconstitution day in June of year t. Likewise, DR2000→R1000
it is 1 when the stock is

moved from the Russell 2000 to Russell 1000. DR2000
it is 1 when stock i belongs to the Russell

2000 on the reconstitution day in June of year t. ∆Ownijt is the change in the fraction of shares
outstanding of stock i owned by all funds with benchmark j aggregated into a single portfolio from
March to September of year t. We further split them by type (active/passive), e.g., active funds
benchmarked to the Russell 1000 index. Ownijt and Ownijt−1 are measured in September and
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March of year t, respectively. We perform our analysis on the changes in ownership from March to
September because it is based on quarterly filings and it is in line with most of the previous studies
(e.g., Appel, Gormley, and Keim (2016)). Because changes in the ownership share are more difficult
to detect for fund groups with smaller AUM, we also report the results for extensive margin, with
the trade dummy used as a dependent variable. Ownijt is the same in levels: fraction of shares
outstanding owned or a dummy for whether the aggregate fund portfolio benchmarked to index j
owns it or not. All other variables are defined as earlier.

Conditional on logMV , dummies DR2000→R1000 and DR1000→R2000 represent an exogenous
change in index membership.49 We confirmed that the results are equivalent to using a 2SLS
estimator, with index membership instrumented with a prediction as of the rank date in May.50

Hence, our results identify the effect of addition to or deletion from an index without a concern that
an omitted variable might be driving both membership in the index and the change in ownership
of funds benchmarked to that index.

We estimate equations 13 and 14 at a stock level for each aggregate portfolio of funds with
the same benchmark and distinguish between active and passive funds. For example, we run a
separate regression for the change in the ownership share of the active Russell 1000 funds. In this
example, the interpretation of α1 is the change in their ownership share due to the stock’s addition
to the Russell 2000 index (and its deletion from the Russell 1000 index group – i.e., the Russell
1000 blend, Russell Midcap blend, and their value and growth counterparts).51

Table 5 documents that both passive and active funds rebalance additions and deletions.
We report the most conservative results with double-clustered standard errors. Consistent with
the literature, we find highly significant stock ownership changes for passive funds in line with
their benchmarks. For example, passive funds benchmarked to the Russell 2000 purchase 77bps
of shares of stocks added to the Russell 2000. These funds also sell deleted stocks in similar
proportions (84bps). At the same time, we see that active funds benchmarked to the Russell 2000
also sell deletions, decreasing their ownership share by 55bps. Another example is that active funds
benchmarked to the Russell Midcap sell, on average, 26bps of deleted shares (from Russell 1000 and
Midcap) and buy 39bps of the added ones. These magnitudes are large given the average ownership
levels of aggregate portfolios of funds with the same benchmark.

On the extensive margin, the benchmark-driven rebalancing is even easier to detect. As
Panel B of Table 5 reveals, active funds are likely to sell deletions from their benchmarks and buy
additions. Panel D shows that all aggregate fund portfolios in our sample are more likely to hold
stocks added to their benchmarks and less likely to hold the deleted stocks.
49As argued, for example, in Schmidt and Fahlenbrach (2017). Similarly, conditional on logMV and
BandingControlsit, index membership dummy DR2000 is exogenous.

50We report the results of the prediction step in Table 12 in the Appendix.
51We explore even more granular rebalancing by style in Section A.29 in the Appendix.
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Table 5: Rebalancing of additions and deletions, by benchmark and fund type

Change in the aggregate ownership of funds with the same benchmark

Stocks ranked < 1000 Stocks ranked > 1000

Benchmark Russell 1000 Russell Midcap Russell 2000
Fund type Active Passive Active Passive Active Passive

Panel A: Change in ownership share

DR2000→R1000 0.122*** 0.105*** 0.394*** 0.113*** -0.546*** -0.840***
(2.97) (3.60) (4.41) (3.16) (-4.95) (-4.18)

DR1000→R2000 -0.101** -0.100*** -0.264*** -0.103*** 0.123 0.771***
(-2.22) (-3.29) (-3.69) (-2.90) (1.47) (3.61)

Panel B: Change in holding status

DR2000→R1000 0.356*** 0.459*** 0.288*** 0.437*** -0.319*** -0.921***
(7.05) (7.93) (5.02) (5.20) (-7.13) (-11.47)

DR1000→R2000 -0.298*** -0.828*** -0.237*** -0.694*** 0.113** 0.829***
(-4.68) (-5.84) (-5.62) (-4.27) (2.39) (6.87)

Panel C: Ownership share

DR2000 -0.032 -0.067** -0.136** -0.065* 0.267** 0.653***
(-1.05) (-2.42) (-2.24) (-1.90) (2.50) (3.01)

Panel D: Holding status

DR2000 -0.177*** -0.351*** -0.057*** -0.651*** 0.002 0.613***
(-8.91) (-6.72) (-4.92) (-4.72) (0.45) (13.06)

This table reports α1j and α2j from estimating (13) (Panels A and B) and αj from estimating (14) in the full sample period (1998-2018).
Estimation is performed at a stock level for an aggregate portfolio of funds benchmarked to index j (active or passive). Band width is 300
stocks around the cutoffs. The dependent variable in panel A is the change in fraction of shares owned by the respective aggregate portfolio
in stock i from March to September in year t. In panel B, it is the direction of the trade of the group (1 for buy, 0 for no trade, and -1 –
for sell). In panel C, it is the ownership share in September. In panel D, it is a dummy that equals 1 if the stock is held by the aggregate
portfolio in September and 0 if it is not. Regressions in both panel C and D additionally control for the value of the dependent variable in
March and include BandingControls (being in the band, being in the Russell 2000 and their interaction in May). All regressions include
logMV (the logarithm of proprietary total market value), Float (proprietary float factor), X̄ (βCAPM and bid-ask spread), and year fixed
effects. In parenthesis are t-statistics based on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10;
∗∗p<0.05; ∗∗∗p<0.01.

Our results are robust to alternative specifications, varying band widths and controlling for
the polynomials of the ranking variable, logMV .52

Because the composition of active funds holding the added stock changes significantly, the
incentives active managers to monitor this stock may change too. The new literature on passive
ownership and corporate governance relies on continuity of active ownership around the Russell
cutoff.53 In Table 29 in the Appendix, we use the approach of Appel, Gormley, and Keim (2019) on
our data. One cannot detect a discontinuity in the total ownership of active mutual funds. However,
the discontinuities are apparent when active funds are split by benchmark.54 This may affect
52We report the results for a narrower band in Table 24 in the Appendix. We add stock fixed effects in Table 25 in the
Appendix. Furthermore, Table 26 in the Appendix reports how the estimates change from 1998-2006 to 2007-2018.

53The list of papers includes but is not limited to: Appel, Gormley, and Keim (2019), Schmidt and Fahlenbrach
(2017), and Appel, Gormley, and Keim (2016).

54Our findings do not contradict Appel, Gormley, and Keim: because of the sheer size of the Russell 2000 passive
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corporate governance, casting doubt on the plausibility of the exclusion restriction in the growing
number of studies on the effects of passive ownership. Our results highlight the importance of
considering active funds’ benchmarks when studying the implications of ownership changes around
the Russell cutoff.

In Table 27 in the Appendix, we further split active funds into less and more active within
each benchmark group by median active share or tracking error and compare the changes in holding
status of index additions and deletions across groups. We see that for all indices, the point estimates
are monotonic: More active funds are less likely to rebalance.

Overall, results in this section suggest that, in line with our theory, Russell benchmarks
serve as both active and passive funds’ preferred habitats. In the next section, we argue that the
same holds true for all important equity indices in the United States.

4.2 External Validity

As Robert Stambaugh points out in his AFA Presidential Address (Stambaugh (2014)),
U.S. mutual funds’ tracking errors have been going down. In our dataset, this trend is drastic. A
simple average tracking error of active funds went down from 7% per annum in the early 2000s to
below 4% in the 2010s.55 For passive funds, these numbers have been below 2% and closer to 0.5%,
respectively. Given that the share of passive funds grew significantly over the past two decades,56

the overall industry tracking error is at its historical low.57

Exploiting the granularity of our dataset, we characterize how close fund portfolios and
returns are to their benchmarks. We aggregate assets of all funds with the same benchmark and
of the same type (active or passive) into one portfolio. Table 6 reports characteristics of the most
important aggregate fund portfolios in our sample. We compute the percentage of portfolio AUM
invested in its benchmark stocks and the number of benchmark stocks held. In 2018, the average
is high at 75% and 77%, respectively, for active funds. Both figures are close to 100% for passive
funds.58

While there is some heterogeneity in portfolios of active funds benchmarked to the same
index, Table 6 shows that, on aggregate, they resemble their benchmarks. From 1998 to 2018, the
active shares and tracking errors went down across indices,59 on average decreasing from 65 to 51%
and from 4.8 to 2.3%, respectively.60 It is also reassuring to see that value-weighted individual

funds, the total passive ownership is higher for stocks to the right of the cutoff.
55This trend is shared by active funds across most important benchmarks, as illustrated by Appendix Figure 9.
56The assets of stock index mutual funds and ETFs now match that of active funds, accord-
ing to: https://www.bloomberg.com/news/articles/2019-09-11/passive-u-s-equity-funds-eclipse-active-in-epic-
industry-shift.

57Active share is also decreasing over time in our sample.
58With the exception of the Russell 3000 Value portfolio which is represented by one fund and smallest in size.
59The only exception is the active share of the S$P 400 portfolio, for which we only have derived index weights after
2002.

60Related literature often uses S&P 500 as a benchmark for all U.S. mutual funds to compute tracking errors instead
of the actual fund benchmark. In unreported analysis, we see that the resulting tracking errors are several times
larger than those using prospectus benchmarks.
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Table 6: Characteristics of the aggregate portfolios of funds with the same benchmark

Benchmark index Fraction
of index
stocks
held, %

% of
portfolio
in index
stocks

AUM, $ billion Number of
funds

Active share,
%

Tracking error
(fund

average), %
Aggregate TE,

% No. top 25/
bottom 25
index stocks

held1998 2018 1998 2018 1998 2018 1998 2018 1998 2018

Panel A: Active funds

Russell 1000 95.1 97.6 12.5 82.9 14 31 58.8 47.7 9.3 4.0 7.9 2.9 25/24
Russell 1000 Growth 91.5 89.8 224.5 352.9 97 121 40.1 34.2 7.4 4.0 3.9 2.3 25/24
Russell 1000 Value 94.0 84.2 179.2 416.6 87 131 44.5 36.0 5.5 2.9 2.6 1.3 25/24
Russell 2000 96.4 66.2 29.0 135.4 86 126 61.9 51.9 9.7 4.6 4.4 2.2 25/25
Russell 2000 Growth 86.7 47.7 27.4 93.7 63 86 62.6 61.0 9.3 5.4 4.1 3.6 25/21
Russell 2000 Value 98.9 58.9 13.9 92.3 40 88 70.3 52.9 7.3 3.6 2.9 1.8 25/24
Russell 2500 86.1 78.7 9.5 30.7 10 37 81.7 68.1 7.2 4.4 3.4 2.9 25/14
Russell 2500 Growth 65.6 73.7 15.0 51.5 15 22 82.1 53.6 9.8 4.7 4.6 2.6 25/11
Russell 2500 Value 60.3 70.5 16.4 19 68.7 3.5 2.3 25/14
Russell 3000 57.2 95.7 9.8 63.0 15 40 75.9 38.8 8.0 2.6 5.7 1.2 25/0
Russell 3000 Growth 29.7 86.5 60.2 101.9 22 29 65.7 46.0 9.0 4.8 7.0 3.6 25/2
Russell 3000 Value 26.1 84.0 55.6 57.6 11 31 77.3 49.1 5.1 3.2 3.5 1.7 25/0
Russell Midcap 73.2 80.4 8.3 64.1 25 36 70.6 56.6 9.6 4.3 5.7 2.1 25/13
Russell Midcap Growth 92.8 67.5 50.7 159.3 60 63 68.8 52.8 10.3 4.0 5.1 2.1 25/24
Russell Midcap Value 91.4 69.6 17.9 140.7 22 54 77.0 48.9 8.5 3.3 5.2 1.7 25/23
S&P 400 67.4 30.4 7.9 32.1 16 15 69.0 77.4 10.6 4.6 7.0 3.1 21/16
S&P 500 99.4 87.0 651.9 1,574.5 340 362 34.7 30.1 7.5 4.7 4.0 1.7 25/25

Mean/total 77.2 74.6 1,373.4 3,465.5 923.0 1,291.0 65.1 51.4 8.4 4.0 4.8 2.3 25/17

Panel B: Passive funds

CRSP US Large 98.9 99.9 20.1 1 1.2 0.1 0.1 25/25
CRSP US Large Growth 99.9 100.0 80.6 1 0.2 0.1 0.0 25/25
CRSP US Large Value 98.1 99.9 67.3 1 2.1 0.1 0.1 25/25
CRSP US Mid 98.8 99.7 97.9 1 1.3 0.1 0.1 25/25
CRSP US Mid Growth 100.0 100.0 12.4 1 0.0 0.1 0.1 25/25
CRSP US Mid Value 97.9 99.5 18.0 1 2.5 0.2 0.2 25/25
CRSP US Small 99.3 100.0 90.7 1 0.7 0.1 0.1 25/25
CRSP US Small Growth 99.4 100.0 23.5 1 0.5 0.1 0.1 25/25
CRSP US Small Value 99.2 99.9 30.9 1 0.9 0.1 0.1 25/25
CRSP US Total 98.7 100.0 744.5 2 2.0 0.1 0.0 25/21
Russell 1000 99.0 99.7 1.2 37.1 1 14 36.6 6.7 4.6 0.4 4.5 0.2 25/24
Russell 1000 Growth 99.8 97.9 62.0 11 4.9 0.9 0.7 25/25
Russell 1000 Value 98.9 99.3 50.1 13 3.4 0.3 0.2 25/24
Russell 2000 99.1 99.4 1.0 59.5 5 18 11.7 2.7 2.3 0.4 1.7 0.2 25/25
Russell 2000 Growth 98.9 99.8 11.1 4 1.1 0.1 0.1 25/25
Russell 2000 Value 99.2 99.6 11.1 6 1.1 0.1 0.1 25/25
Russell 3000 98.9 99.9 13.2 9 4.4 0.7 0.5 25/25
Russell 3000 Value 27.1 88.3 3.9 1 31.4 1.1 1.1 23/0
Russell Midcap 98.9 99.5 19.7 5 3.0 0.2 0.1 25/24
Russell Midcap Growth 99.8 100.0 8.9 1 0.2 0.1 0.1 25/25
Russell Midcap Value 98.5 99.6 10.8 1 1.6 0.1 0.1 25/24
S&P 400 99.7 97.2 65.1 16 2.9 0.2 0.1 25/25
S&P 500 99.6 99.6 146.3 1019.1 46 83 1.1 4.1 0.4 0.2 0.2 0.1 25/25

Mean/total 94.9 98.8 148.6 2,261.3 52.0 187.0 16.5 4.2 2.4 0.3 2.1 0.2 25/24

This table shows characteristics of the aggregate portfolios of active mutual funds (Panel A) and passive mutual funds and ETFs (Panel B). Each portfolio
is a value-weighted sum of funds benchmarked to the respective index. Active share is for the aggregate portfolio. Tracking error is value-weighted across
constituent funds, annualized. Aggregtate TE is for the aggregate portfolio. AUM and number of funds are as of June 1998 or June 2018. The last column is
as of June 2018. The rest of the values are averages for the respective year. Only aggregate portfolios larger than $1 billion in assets are shown. Active share
for S&P 400 in 1998 column is for 2002, from when we have the index weights.
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funds’ tracking errors also decreased from 8.4 to 4%. In line with our discussion of optimized
sampling in Section 3.3.4, we see that the aggregate portfolio of funds with the same benchmark
is more likely to include the largest 25 stocks in the index compared to the smallest stocks. It is
particularly pronounced for active funds that hold all top-25 stocks and only 17 out of 25 smallest
stocks on average.

Results in this section suggest that benchmarks define funds’ preferred habitats.61 Impor-
tantly, active funds look like preferred habitat investors as well. In line with our model, they hold
a significant fraction of assets in benchmark stocks and rebalance additions to and deletions from
their benchmarks.

5 Benchmarking Intensity and Stock Risk Premium

In this section, we explore the prediction of our theory that stocks with higher benchmarking
intensities have lower expected returns. In particular, we find that a stock that experiences a
conditionally exogenous increase (decrease) in its BMI due to the Russell reconstitution has a
lower (higher) return for one to five years. We argue that this is not driven by a negative return
momentum and future changes in cash flows or liquidity.

5.1 BMI and Long-Run Returns

In this section, we show that a higher benchmarking intensity leads to lower returns in the
long run. Specifically, stocks with a larger increase in BMI in year t significantly underperform up
to year t+ 5.

Our goal is to test the negative relationship between benchmarking intensity and stock
returns predicted by our theory. As explained in Section 3.3, the Russell cutoff provides a convenient
setup because the change in BMI is conditionally exogenous.

As earlier, we employ a stock-level specification to estimate α:

Yi t+h =α∆BMIit + ζlogMVit + φ′BandingControlsit + ξF loatit + δ′X̄it + µi + µt + εit (15)

In the above specification, the dependent variable, Yi t+h, is an average long-run return of
stock i from September of year t over the investment horizon h.62 Specifically, we consider the 12-,
24-, 36-, 48-, and 60-month excess returns, which are not risk-adjusted. ∆BMIit is the change in
BMI from May to June in year t.63 We use our baseline BMI defined in equation (5) here, and
present the analysis for the weighted BMI, adjusted for fund activeness in Appendix C. µi are stock
61All our analysis is conditional on the benchmark in the manager’s contract. Our model does not take a stand on
how end investors pick the benchmark or fund to invest in. Possible rational explanations include the need to hedge
endowment shocks of a particular type or to hedge displacement risk. Behavioral explanations include psychological
foundations for why investors prefer growth over value, over-reaction, and extrapolation of past returns.

62We measure long-run returns from September to avoid price pressure from potentially delayed rebalancing of index
funds in July and August. Results for returns computed from July are reported in Appendix Table 30.

63As was shown earlier, it does not pick up the change in price in June.
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fixed effects to remove any unobserved constant heterogeneity.64 All other variables are defined as
earlier. Our samples are again restricted to stocks around the cutoff, we report results with band
widths of 300 and 150.

Our dependent variable spans horizons from 12 months to 5 years. There is some ambiguity
about what the long run is in the literature. The IPO performance literature (following Ritter
(1991)) typically defines it as three years. The long-run reversal literature (started by De Bondt
and Thaler (1985)) uses horizons from 18 months to five years. In our case, an additional problem is
posed by flippers, i.e., stocks that switch from one benchmark to the other several times during the
horizon that we are considering. Our model requires the stock’s BMI to remain largely unchanged
for the expected return result to play out as predicted.65

Results of estimating equation (15) are documented in Table 7. As the coefficient on ∆BMI

is significantly negative, stocks with an increase in benchmarking intensities have lower returns in
the future. The effect persists for up to 5 years after the reconstitution.66

The magnitude of this effect is economically significant. In order to interpret the magnitude
for an average added or deleted stock in our sample, we need to take into account the average size
of ∆BMI for added and deleted stocks, 5.22% and -4.40%, respectively. Our baseline estimates
imply that addition to the Russell 2000 results in around 2.8% lower return in the following year
while deletion from it leads to a 2.4% higher return. Magnitudes are roughly the same across
specifications with different controls and for a narrower band width. Panel E of Table 7 shows that
after 2007, the magnitudes are not significantly lower.
64They are expected to be more important for the long-run returns compared to the short-run tests in the first part
of the paper. We report results with and without stock fixed effects.

65Our theoretical predictions concern stocks that joined a set of indices and stayed in them until the end of the
investment horizon. In unreported analysis, we see that our results are considerably stronger, both statistically
and in magnitude, if we drop stocks that moved between the Russell 1000 and 2000 indices more than once in the
relevant horizon. However, excluding flippers introduces a selection bias. A stock that was added to the Russell
2000 index has to appreciate to come back to the Russell 1000 the next year. Therefore, by excluding flippers, we
naturally exclude stocks with the most positive return realizations, which biases the estimate of α in (15) downward.

66Even though it might seem from the table that most of the effect is concentrated in the first 12 months after index
reconstitution, the negative relationship is long-term. To confirm this, we report Table 31 in the Appendix, which
uses average returns over a future period as the dependent variable. It shows that the returns are lowest in the
1-12 months period, and they are significantly lower for the period between 13 and 24, and weakly lower between
25 and 36 as well as 37 and 48 months.
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Table 7: BMI change and long-run returns

Excess returns, average over horizon

Horizon (months) 12 24 36 48 60

Panel A: All baseline controls

∆BMI -0.045** -0.037*** -0.020*** -0.016** -0.009**
(-2.81) (-3.63) (-3.87) (-2.75) (-2.16)

Observations 13,813 12,318 10,928 9,731 8,633

Panel B: Baseline controls without stock fixed effects

∆BMI -0.039* -0.034** -0.016** -0.015** -0.010
(-1.86) (-2.50) (-2.31) (-2.18) (-1.58)

Observations 14,351 12,800 11,388 10,091 8,988

Panel C: LogMV , Float and BandingControls only

∆BMI -0.039** -0.034*** -0.020*** -0.016*** -0.011***
(-2.69) (-3.63) (-4.52) (-3.23) (-3.15)

Observations 14,700 13,124 11,605 10,279 9,082

Panel D: All baseline controls and a narrower band

∆BMI -0.033** -0.029*** -0.016*** -0.014** -0.010**
(-2.38) (-3.18) (-3.54) (-2.81) (-2.91)

Observations 7,640 6,830 6,078 5,378 4,743

Panel E: All baseline controls and interaction with post-banding dummy

∆BMI -0.044* -0.046*** -0.020*** -0.015* -0.009
(-1.94) (-3.35) (-3.02) (-1.84) (-1.47)

∆BMI ×D>2006 -0.001 0.017 0.001 -0.003 0.000
(-0.07) (1.46) (0.09) (-0.35) (0.01)

Observations 13,813 12,318 10,928 9,731 8,633

This table reports the results of the regression of the long-run returns on change in BMI, ∆BMI, in the full sample
(1998-2018). The dependent variable is an average monthly excess return from September in year t over the respective
horizon. Panels A and B include all baseline controls, while Panel C – log total market value, the proprietary ranking
variable, and the banding controls only. Panel E adds an interaction between ∆BMI and D>2006, which equals 1 in
years 2007-2018 and 0 otherwise. In Panels A, B, C, and E, we limit the sample to 300 stocks around the cutoffs.
Panel D limits the sample to 150 stocks around the cutoffs. The baseline controls include logMV (the logarithm
of proprietary total market value), Float (proprietary float factor), BandingControls (being in the band, being in
the Russell 2000 and their interaction in May), X̄ (βCAP M and bid-ask spread), and stock and year fixed effects.
t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance levels are
marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

Consistent with the model, this analysis shows that an increase in the size of the preferred
habitat has a long-lasting effect on stock returns.67 Interpreted through the lens of our model, this
means that inelastic demand from the benchmarked institutions lowers the stock risk premium.
67Permanent, as long as the stock stays in the benchmark.
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5.2 Robustness

5.2.1 Alternative Explanations

Our model is static and it cannot speak to transitory effects of index inclusion on stock
prices. In an extention of the model that incorporates additional periods, one could generate a
partial or full reversion of the index effect. Suppose that there is not enough arbitrage capital in
June to prevent the index effect. However, in the longer run, as arbitrage capital flows in, the
index effect reverses and prices get closer to their fundamental values. This slow-moving capital
theory was proposed by Grossman and Miller (1988) and Duffie (2010).68 A dynamic version of our
model in which direct investors do not rebalance immediately or end investors are slow to relocate
their capital across benchmarks could capture this effect. Our long-run underperformance result
is consistent with transitory effects, especially because the bulk of the long-run effect that we find
comes from the first two years (see Table 31 in the Appendix). One could also attribute it to a
time-varying risk premia due to the stocks’ inclusion in other benchmarks over a 5-year horizon
(and other changes to their BMIs).

It has been argued that the transition to the Russell 2000 increases passive ownership
of a stock, which may have implications for corporate governance. The positive return in June
could be a signal of an improvement in corporate governance that would take place in the future.
The documented effects on corporate governance, however, seem to be mixed, with some metrics
improving and some deteriorating.69 Therefore, the expected cash flow or performance impact is not
clear. Moreover, the majority of documented effects of Russell reconstitution on firm fundamentals
are short-term: they are measured in the year following the reconstitution, while our main focus is
on long-term returns.

Our model assumes that firms’ cash flows are fixed and a change in BMI affects firm value
through the discount rate, so we need to rule out the cash flow channel. We investigate whether
the firms’ cash flows change in response to the change in BMI. In particular, we regress the three-
year change in fundamental characteristics associated with cash flows on ∆BMI and our standard
controls. Table 32 in the Appendix describes the variables and Table 33 reports the estimates. We
see that firms with a larger increase in BMI seem to have a weakly lower M/B ratio and weakly
higher profitability. The latter is consistent with the literature (Appel, Gormley, and Keim (2016)),
but both go against our finding that these firms underperform. In general, we find little evidence
the change in BMI is related to future changes in accounting variables driving cash flows.

One may have a concern that stocks added to the Russell 2000 benefit from improved
liquidity. Intuitively, if a stock has a higher BMI, it might be more subject to liquidity-based
trading and, potentially, more available for lending. In Table 33, we also report whether turnover,
short interest ratio, percentage bid-ask spread, and ILLIQ of Amihud (2002) change with BMI.
68The limits-to-arbitrage literature (see e.g., Gromb and Vayanos (2010) for a survey) attributes the inability of
arbitrageurs to fully absorb demand shocks (e.g., resulting from index inclusion) to capital constraints and other
frictions that they face.

69See Heath, Macciocchi, Michaely, and Ringgenberg (2021), Appel, Gormley, and Keim (2021), Schmidt and Fahlen-
brach (2017), and Appel, Gormley, and Keim (2016).
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We find that a change in short interest is positively related to the change in BMI. It is, in fact,
consistent with our model: as stock price increases with BMI, direct investors are more likely to
sell it (short). In practice, stocks with higher BMIs might have lower short-selling costs because
of a larger securities lending supply by long-only funds. At the same time, turnover and liquidity
measures are not related to BMI, and the loading on Pastor and Stambaugh (2003) liquidity factor
does not change either.70 Therefore, it is unlikely that a decrease in liquidity premium is driving
our findings.

Another alternative explanation for our long-run results could be that returns of firms that
have transitioned to the Russell 2000 are lower because these firms have fallen on hard times and
their cash flows are deteriorating. If this momentum continues, it is not surprising to see that
the firms added to the Russell 2000 have lower future returns relative to firms that stayed in the
Russell 1000. In unreported tests, we see that controlling for past returns only slightly lowers the
estimates. Nonetheless, we took further steps to ensure this explanation is ruled out. We have
checked explicitly whether our results are driven by future financial distress. First, in our dataset,
Altman Z-scores do not change upon index reconstitution (Table 33). Moreover, excluding firms
classified by Altman Z-score as being ‘in distress’ or ‘in the grey zone’ does not change either the
significance or magnitude of our results. Second, excluding firms that ever filed for bankruptcy or
experienced credit rating downgrades does not affect the estimates.71

5.2.2 Further Remarks on Identification Approach

Our identification approach avoids several problems that have been highlighted in the lit-
erature (e.g. Wei and Young (2021)). Specifically, we do not use June weights for assignment
or sample selection. Moreover, our proprietary ranking variable alleviates questions regarding the
conditional exogeneity assumption.72

Furthermore, the variation in BMI does not conflict with the known discontinuities around
the Russell cutoff. That is, the local variation in total institutional ownership (IO), passive IO,
benchmarked IO, and ETF ownership are implicit in the construction of our measure. They are
also assumed to be time-varying since the amount of capital linked to indices changes (shown in
Table 11 in the Appendix) and new indices emerge. Therefore, BMI is a unifying measure that
implies some variation in all aforementioned variables; whether it is more pronounced in a particular
sample depends on the distribution of assets between benchmarks.
70Although our model does not suggest any changes in risk factor loadings, in unreported tests we check if they are
affected by the change in BMI. We find no robust changes in either Fama-French-Carhart, Fama-French 5-factor,
or Pastor and Stambaugh (2003) loadings. This analysis involves estimating a regression of the five-year change
in loadings on change in BMI with our standard controls. All loadings are 5-year computed from monthly rolling
regressions of stock excess returns on factor returns available from Ken French’s website or WRDS, with a minimum
of 2 years of data required for estimation.

71We have also experimented with excluding firms that had a rapid deterioration in their market value rank prior
to reconstitution. While our baseline analysis excludes jumps of 500 ranks, we have tried excluding firms that lost
even as little as 100 ranks. Our results remained qualitatively unchanged, albeit the magnitude of the effect was
larger.

72As we discussed above, the assignment prediction quality is very high.
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6 Conclusion

In this paper, we propose a measure that captures inelastic demand for a stock – bench-
marking intensity. Exploiting a variation in the benchmarking intensity of stocks moving between
the Russell 1000 and Russell 2000 indices, we document the effects of a change in BMI on stock
prices, expected returns, ownership, and demand elasticities.

Our measure reflects the inelastic demand of both active and passive funds for stocks in
their benchmarks. According to our preferred habitat view, active funds are not genuinely active
investors. Rather, they simply deviate from their benchmarks to a larger extent than passive funds.
In our sample, active funds own large fractions of shares outstanding, higher than passive funds,
and that is why they contribute significantly to the aggregate inelastic demand for benchmark
stocks. On average, a large part of active funds’ holdings is in benchmark stocks, both in terms of
the number of stocks and AUM share. We find evidence of the inelastic demand of active managers
in the ownership data. Studying the rebalancing around the Russell cutoff, we document that both
active and passive managers buy additions to their benchmarks and sell deletions. Because of this,
our framework has important implications for measuring the price elasticity of demand for stocks.
The demand elasticities differ from those in the previous research based on index inclusions because
the literature has not accounted for the inelastic component in active managers’ demand and for
the heterogeneity of benchmarks.

Our model abstracts from transaction costs but, in practice, they are important. To save
on transaction costs, fund managers often engage in the so-called optimized sampling, which leads
to exclusion of some of the smallest stocks in the benchmark from the funds’ portfolios. However,
changes in BMI still represent a strong instrument for changes in institutional ownership and can be
used for estimating demand elasticities. Our measure of BMI can be further refined by accounting
for assets of benchmarked investors other than mutual funds and ETFs. This is likely to make BMI
stronger as an instrument.
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A Online Appendix

A.1 Assets Benchmarked to Indices

Figure 4: Assets benchmarked to indices

(a) All stocks (b) Mid- and small-cap stocks

This figure shows the evolution of the share of benchmark groups in the total assets under management of US domestic
equity mutual funds and ETFs. Mid- and small-cap stocks are in 75th − 95th percentile of market capitalization. All
reported indices include blend, value and growth types, e.g. Russell 1000 above represents the sum of the Russell
1000, Russell 1000 Value, and Russell 1000 Growth. CRSP indices were launched in 2012 when Vanguard switched
from MSCI indices. In the graphs, we show the share of CRSP after 2012 and corresponding MSCI indices before
2012. The group of ‘other benchmarks’ consists of such indices as Dow Jones, FTSE, and Wilshire as well as smaller
benchmarks that we do not differentiate among.

A.2 Details on Data

Stock data comes from standard sources. We take daily returns, prices, adjustment factors,
and bid and ask prices from CRSP.73 Market, risk-free rate, and factor returns are from Ken
French’s Database. All fundamental accounting data comes from Compustat. We use CRSP-
Compustat linking table and take into account release dates to make sure that the variables are
available to the public by the rank date in May.

In fund rebalancing analyses, we use holdings available in the CRSP Mutual Fund Database
(CRSP, June 2010 - December 2018) and Thomson Reuters S12 (TRS12, March 1980 - December
2018). Our main source after 2010 is CRSP and we use TRS12 to add funds for which data is
not available in CRSP. Moreover, CRSP is used to validate the net assets of the funds in TRS12
prior to 2010 and pull various fund-level characteristics, such as returns, expense ratios, equity
percentage, and others. We merge the databases using MFLINKS following steps described in
73Returns are adjusted for delisting in a standard way.
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Section A.4 in the Appendix. We follow several data validation procedures and impose typical
mutual and exchange-traded fund filters, which are outlined in the Appendix as well (Section A.6).
Fund ownership share for any stock is computed as the percentage of shares held by funds of a
certain type in the total number of shares outstanding for the stock. We exclude observations with
the total fund ownership over 100%.

We classify funds into active and passive based on the index_fund_flag in CRSP and
by screening fund names. All ETFs in our sample are classified as passive. A fund is classified as
an ETF if its et_flag in CRSP is non-empty or it has exchange-traded or etf in its name. We
manually resolve and exclude exceptions when the same portfolio has share classes of both active
and passive funds. Detailed steps as well as the textual rules we deploy for the screening are listed
in Section A.8 of the Appendix.

Total institutional ownership is from 13F filings.74 We exclude observations with the total
institutional ownership over 100%.

We use daily fund returns from CRSP and benchmark returns from Morningstar in order
to compute tracking errors (net).

A.3 Construction of the Historical Benchmarks Data

We manually assemble a dataset of historical mutual funds and ETF benchmarks from the
following sources:

1. Snapshot of benchmarks (primary_prospectus_benchmark field) in Morningstar as of Septem-
ber 2018.

2. Database of historical fund prospectuses available on the website of the U.S. Securities and
Exchange Commission (SEC).75

3. SEC Mutual Fund Prospectus Risk/Return Summary data sets (MFRR).76 Benchmarks are
mentioned in the annual return summary published in prospectuses.

We use the crsp_fundno-CIK mapping from CRSP to link CIK, SEC identifiers, back
to crsp_fundno. To map CRSP and Morningstar, we mostly follow the procedure in Pastor,
Stambaugh, and Taylor (2015), details are below in Section A.5.

A.3.1 Scraping the EDGAR and Building Text-Based Series

Mutual funds are required to regularly submit filings to the SEC. The SEC’s EDGAR
system stores filings in electronic archives since 1994. Even though the SEC Rule S7-10-9777

required funds to report their benchmark (or a ‘reference broad market index’) in prospectuses
74We thank Luis Palacios, Rabih Moussawi, and Denys Glushkov for making their code for computing institutional
ownership ratios publically available on WRDS.

75The SEC’s fund search page: https://www.sec.gov/edgar/searchedgar/mutualsearch.html
76The MFRR page: https://www.sec.gov/dera/data/mutual-fund-prospectus-risk-return-summary-data-sets.
77Available on: https://www.sec.gov/rules/final/33-7512r.htm.
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from December 1, 1999, some funds voluntarily did so prior to that (Sensoy (2009)). Reporting of
manager compensation contracts was required by the SEC Rule S7-12-0478 starting in the October
of 2004. Therefore, the procedure discussed below will cover the history of filings for any particular
fund back to 1998.

The filings that include information on fund benchmark and manager compensation are
N-1A/485 (registration statement including a prospectus), 497K (summary prospectus), 497 (fund
definitive materials), and 497J (certification of no change in definitive materials). All of these
can be accessed via package ‘edgarWebR’ available in R.79 Since the holdings data set is already
linked to CRSP fund identifiers (fundno), we will use all CIK codes80 available in the mapping file
crsp_cik_map. For each CIK, we retrieve a list of all historical filings (485 and 497/497K/497J
forms) using company_filings() function. Then we parse the filings into raw text format using
parse_filing() function.

Having obtained the filings for each CIK and each filing date, we re-organize the data set
into a panel: quarterly text files for each fund. To do so, we assign observations with a 497J form a
’no-change’ tag. Moreover, after looking at the text data, we assign a ‘no-change’ tag to 497 forms
with no reference to benchmark or manager compensation.81

Before extracting the data, each of the filings is tokenized (we work with both tokenized
text and string formats) and de-capitalized, punctuation and certain stop words are removed.82 All
these steps are done using NLTK83 module in Python. Afterwards, we classify all 485 and 497K
documents as prospectuses, while we have to look into the content of 497 filings to classify them
into prospectuses or statements of additional information (SAI). Typically, funds specify the type
of the document in the header, we therefore search for the exact match (‘prospectus’ or ‘statement
of additional information’) in the first 100 characters of the filing.

There are a few challenges we face when extracting the fund benchmark from prospectus
text. Even though all funds are required to disclose the benchmark, they tend to do it in a very
different manner. Some funds explicitly say that the performance can be evaluated against a
particular market index, some only report the index performance below the required performance
tables (as an implicit benchmark). If referring to the benchmark in the text, funds do not use
standardized language: some may say ‘benchmark’, some ‘market index’ or ‘reference index’ and
some may omit the term and only use a phrase similar to ‘performance is measured against’.
Moreover, some funds may define a mixture of indices as their benchmark, e.g., ‘60% Russell
78Available on https://www.sec.gov/rules/final/33-8458.htm.
79Description is available on: https://cran.r-project.org/web/packages/edgarWebR/index.html.
80The Central Index Key (CIK) is used as the main identifier of the filing entities on the SEC’s EDGAR and available
per fund, fund series, and fund company. We first use series CIK as benchmarks differ at this level, then we use
company CIK to fill in any missing observations.

81Since fund prospectus is a legal document and fund clientele supposedly depends on it, we see that prospectuses
are relatively ’sticky’ and hence the time series for most of the funds looks like ’prospectus’ definition at an early
date and then at most 1-2 changes for the fund history.

82Numerical data and special characters cannot be removed though as they are included in benchmark names.
Moreover, we retain negation.

83Official page is: http://www.nltk.org/.
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1000, 40% Russell 2000’. Therefore, we are faced with the task of extracting information from
unstructured text.

Finally, in some cases, we need to first isolate the text to extract the benchmark name
from. Fund families may choose to submit one prospectus for many funds. Within one prospectus
document, many funds can either share the same section or each fund can have a separate section.
We therefore extract the fund-relevant part of prospectus whenever possible (typically in the second
case only). To do so, we search for the fund name and the fund ticker in the text. Most commonly,
the relevant section starts with a ticker/name and has it repeated on each page throughout the
section. We hence extract the part of the text with the highest density of tickers/fund names.

When extracting benchmarks from the (isolated) text, we use a set of rules that maximizes
the chance of the algorithm picking up the benchmark correctly. The set of rules includes but is
not limited to:

• Search for a benchmark series name from the list (de-capitalized already): {s&p, russell, crsp,
msci, dj, dow jones, nasdaq, ftse, schwab, barclays, wilshire, bridgeway, guggenheim, calvert,
kaizen, lipper, redwood, w.e. donoghue, essential treuters, barra, ice bofaml, bbgbarc, cboe}.84

If a benchmark from the list is found, retrieve the subsequent 40 characters to extract the
full benchmark name. Match the full names using the list from Morningstar (for example,
russell 1000 value tr usd).

• If several matches are established, we record the number of matches and each benchmark
name (with subsequent characters, as above).

• We also search for words from the list (context words): {index, benchmark, reference, per-
formance, relative, return, measure, evaluate, assess, calculate}. We use these words in two
ways. Firstly, if a benchmark name match is established, we check if any of these context
words is present within 100 characters around the name. Secondly, if no match is established,
we record pairwise distance in letters between benchmark names and context words and re-
turn the pair with minimum distance. This second approach is based on the string format of
the text and required if the match was not established due to imprecision in tokenization.

We manually clean the extracted data to remove typos and map it to full benchmark names.
In the resulting sample of quarter-fund-benchmarks, we manually verify all funds that got matched
with several benchmarks or that had a benchmark change. Subsequently, we validate a random
sample of funds through manual analysis of the prospectus text. We also compare the benchmarks
as of September 2018 with a snapshot we obtained from the Morningstar database and manually
resolve any mismatch. Furthermore, we compare a time series we get with a series available for a
small sample of funds in MFRR.
84This list has been compiled using the Morningstar benchmark snapshot for mutual funds and ETFs. It is
survivorship-bias free. According to Morningstar, the first three benchmark series take close to 90% of the market
and the first seven - close to 100%.
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As expected, prospectuses are relatively sticky. In the entire sample over 1998-2018, we
observe 1,208 changes at a share class level (around 300 at master fund level). The largest bench-
mark change in terms of tracking assets for passive funds in Vanguard’s move from MSCI to CRSP
indices in 2012 and 2013. For active funds, it is T. Rowe Price’s change from the S&P 500 to
Russell 1000 Value and Growth indices in 2018.

A.4 CRSP and Thomson Reuters S12 Merge Procedure

We use Mutual Fund Links (MFLINKS) to merge CRSP and TRS12 similar to the procedure
described in Doshi, Elkamhi, and Simutin (2015).

Firstly, we prepare TRS12 holdings:
- keep last holdings report for each fund in a given month,
- match WFICN number from MFLINKS to fundno, rdate, and fdate in TRS12 file,
- when there are duplicate reports for the same date, keep the fund with the largest assets,
- pull CRSP stock files and adjust reported number of shares by the correct adjustment factor - as
of rdate.

Then, we prepare CRSP holdings:
- clean the data based on portnomap to ensure that only one portno is valid for a particular date
for any fund (remove overlaps in the data due to mergers),
- match WFICN number from MFlinks to crsp_fundno,
- clean overlaps in wficn-portno mapping,
- keep the last report for every month.

Finally, we stack the two parts and remove duplicate entries from CRSP (at a fund level).

A.5 CRSP and Morningstar Merge Procedure

The merge procedure is a slight modification of the procedure reported in the Data Appendix
to Pastor, Stambaugh, and Taylor (2015). For funds that did not get merged by ticker or CUSIP,
we compare monthly total net assets and monthly return for each pair of funds between CRSP
and Morningstar. In particular, we repeat Step 2 of the procedure at 80th percentile and manually
remove non-unique matches or matches of share classes within the same master fund. We add
matched funds to the merged sample.

A.6 Asset Validation

TNA and holdings data are generally validated by MFLINKS (only funds with sufficient
match quality are linked). However, we additionally validate the TNA in order to ensure a better
match with the holdings. In the case of CRSP, we use the sum of assets across share classes and
weigh share class level data such as equity percentage by the fraction of total assets this share class
represents. Because TRS12 reports only equity and CRSP reports all assets, we multiply the most
recent equity percentage by CRSP assets. We use the following for validation:
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- compare the total dollar sum of holdings in the merged file with the assets reported by TRS12
and CRSP and call the difference ‘unexplained’,
- if the difference between TRS12 and CRSP is smaller than 1%, we use CRSP,
- if CRSP has lower unexplained or TRS12 does not report assets, we use CRSP and otherwise
TRS12.

A.7 Filtering

In the final sample, we keep only funds that:
- have fund-quarter entries where we validated the assets at 20% precision;
- are either active or passive domestic equity funds that did not change its style or objective over
their history (see details below in Section A.8);
- have an average common equity percentage between 50 and 120%;
- have more than USD 1 million in assets.

A.8 Active and Passive Domestic Equity Funds

We follow the major steps of the procedure described in Doshi, Elkamhi, and Simutin (2015)
to filter out active domestic equity funds, and modify it to better identify passive funds.

We use crsp_obj_cd (CRSP objective code) to identify ‘equity’, ‘domestic’, ‘cap-based
or style’ and exclude ‘hedged’ and ‘short’ and remove those funds that changed their objectives.
We also only keep funds with ‘ioc’ variable in TRS12 file (investment objective) not in (1,5,6,7).
Active funds are identified as those without Index_fund_flag or with ‘B’ (index-based funds)
and without et_flag. We also exclude funds that have a range of words in their names, as per the
list below.

List of n-grams to exclude from active funds names (all in lower case).

1. Generic and index provider names: index, indx, ‘ idx ‘, s&p, ‘ sp ‘ (with spaces), nasdaq,
msci, crsp, ftse, barclays, ‘ dj ‘, ‘ dow ‘, jones, russell, ‘ nyse ‘, wilshire, 400, 500, 600, 1000,
1500, 2000, 2500, 3000, 5000

2. Passive management names: ishares, spdr, trackers, holdrs, powershares, streettracks, ‘ dfa ‘,
‘program’, etf, exchange traded, exchange-traded

3. Target fund names: target, retirement, pension, 2005, 2010, 2015, 2020, 2025, 2030, 2035,
2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075

Our sample of passive funds consists of index funds and ETFs available on CRSP. Index
funds are those with index_fund_flag equal to D or E and those that include any of the following
words in their name:

1. Generic and index provider names: index, indx, ‘ idx ‘, s&p, ‘ sp ‘ (with spaces), nasdaq,
msci, crsp, ftse, barclays, ‘ dj ‘, ‘ dow ‘, jones, russell, ‘ nyse ‘, wilshire, 400, 500, 600, 1000,
1500, 2000, 2500, 3000, 5000
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2. Passive management names: ishares, ‘ dfa ‘, ‘program’

ETFs are those with not missing et_flag or having one of the following words in their
name:

1. Passive management names: spdr, trackers, holdrs, powershares, streettracks, etf, exchange
traded, exchange-traded

Target funds are those with target years in the name, e.g., ‘2015’ or ‘2075’, or ‘retirement’,
‘target’. Creating a clean sample of target funds potentially requires different treatment of objective
codes (see CRSP Style Guide). Since we only aim to exclude them, we remove fund with the
following n-grams in their names:

1. Target fund names: target, retirement, pension, 2005, 2010, 2015, 2020, 2025, 2030, 2035,
2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075

We exclude all leverage and inverse funds by identifying the following in their names: lever-
age, inverse, 2x, 1.5x, 1.25x, 2.5x, 3x, 4x.

If we apply the rules above, some of the funds in the sample will include both active and
passive share classes. We clean the resulting sample of funds with share classes of different types
as per the rule: (a) Put ETF shares of index funds as ETFs (passive type maintained). (b) When
missing the flag for otherwise index funds and portno is the same, set to index. (c) If portno or
cl_grp are different, exclude.

The remaining funds are further filtered based on the common equity percentage as discussed
in A.7.
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A.9 Russell Reconstitution

Russell indices undergo a yearly reconstitution at the end of June. The reconstitution is
a two-step process: assigning a stock to an index and determining the weight of the stock in that
index.

Figure 5: Discontinuities in Index Weights and BMI before and after 2006

(a) Index weights upon reconstitution in 2006 (b) Benchmarking intensity in 1998-2006

(c) Index weights upon reconstitution in 2012 (d) Benchmarking intensity in 2007-2018

This figure plots index weights and benchmarking intensity against the total market value rank on the rank day in
May. Index weights are a snapshot on the reconstitution date in 2006 (June 30th) and 2012 (June 29th). Benchmarking
intensity is averaged for constituents of each index across bins of 10 stocks and over the relevant period. Russell 1000
Group includes the Russell 1000 and Russell Midcap (blend, value, and growth). Russell 2000 Group includes the
Russell 2000 (blend, value, and growth).

The first step is solely based on the ranking of all eligible securities by their total market
capitalization on the rank day in May. For most of the years in our sample, the rank day falls on the
last trading day in May.85 Russell uses its broadest Russell 3000E index as the universe of eligible
securities together with newly admitted stocks.86 Ranks are computed based on the proprietary
measure of the total market capitalization of eligible securities. This proprietary measure has been
85Exceptions are recent years, when the rank days were: 05/27/2016, 05/12/2017, and 05/11/2018.
86See the details on the methodology in the official and publicly available guide.
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made available to us by Russell8788 and hence we are able to replicate the assignment rule very
closely.

In the second step, each stock in the index is assigned a weight based on its float-adjusted
market capitalization in June. To define the adjustment, Russell uses proprietary float factors,
which we can infer from total and float-adjusted market capitalization. These factors do not affect
index assignment but they explain some variation in the benchmarking intensity due to their direct
relationship with index weights: all else equal, stocks will have lower index weight if the float
adjustment is larger, and hence lower BMI.

Before 2007, a firm would be assigned to the Russell 2000 index if and only if its total
market value rank falls between 1000 and 3000. Since the assignment is based on ranks, firms
cannot manipulate it.89 Moreover, an idiosyncratic shock to the market value on the rank date can
bring the stock to the other side of the cutoff. Hence, the assignment is as good as random.

In order to reduce the turnover between indices, FTSE Russell introduced a ‘banding’ policy
in 2007. According to the new rule, a stock is assigned to the Russell 2000 index if and only if:

• it was in the Russell 2000 in the previous year and its total market value rank in May falls
between the left cutoff (1000− c1) and 300090

• it was in the Russell 1000 and its total market value rank in May falls between the right cutoff
(1000 + c2) and 3000.

The band, that is, the range of ranks between (1000 − c1) and (1000 + c2), is still based on a
mechanical rule but it changes each year with the distribution of firm sizes around the cutoff.91

Because of banding, the turnover between indices went down significantly, as intended.92 We list
the number of additions and deletions per year in Table 8.
87We match this measure to the May Russell 3000E constituent lists as well as the preliminary constituent lists from
June in order to arrive at the universe of eligible securities. The preliminary lists have also been provided by
Russell.

88We performed our analysis with the market value measure constructed from CRSP and Compustat as in Chang,
Hong, and Liskovich (2015) as well. This measure delivers qualitatively identical main results.

89Typically, bunching is formally tested for with McCrary (2008) test but since the assignment variable is a rank,
which is relative to other stocks, bunching is not possible.

90The rule is similar for stocks moving to the Russell 2000 from below, i.e., around rank 3000. We are omitting it
here for brevity.

91Specifically, it is a 5% band around the cumulated market cap of the stock ranked 1000 in Russell 3000E universe
on the rank date.

92Russell’s analysis is available online: https://www.ftserussell.com/blogs/russell-2000-recon-banding-results-lower-
turnover.
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Table 8: Historical Details on Russell 2000 Reconstitution

Russell 1000 Russell 2000

Year Additions Deletions Smallest
Smallest

w/banding
Largest

w/banding Largest

1998 57 54 1.4 1.4
1999 59 70 1.4 1.4
2000 50 48 1.6 1.5
2001 86 104 1.4 1.4
2002 78 73 1.3 1.3
2003 43 56 1.2 1.2
2004 49 38 1.6 1.6
2005 61 58 1.8 1.7
2006 49 68 2.0 1.9
2007 5 15 2.5 1.8 3.1 2.5
2008 31 38 2.0 1.4 2.7 2.0
2009 36 39 1.2 0.8 1.7 1.2
2010 14 25 1.7 1.3 2.2 1.7
2011 23 35 2.2 1.6 3.0 2.2
2012 27 32 2.0 1.4 2.6 1.9
2013 27 30 2.5 1.8 3.3 2.5
2014 28 24 3.1 2.2 4.1 3.1
2015 48 20 3.4 2.4 4.3 3.4
2016 48 34 2.9 2.0 3.9 2.9
2017 40 31 3.4 2.3 4.5 3.4
2018 35 48 3.7 2.5 5.0 3.7

This table reports the number of additions to and deletions from the Russell 2000. We only report
deletions which moved to the Russell 1000, not those that moved down in the ranking. The last for
columns report the market value (in billions USD) of smallest and largest stocks in the indices.
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A.10 Descriptive Statistics

Table 9: Descriptive statistics

Obs. Mean St.Dev. Min Max

BMI, % 16,359 18.74 7.42 0.49 68.57
∆BMI, % 16,359 0.24 3.27 -52.34 31.77
Return in June, % (winsorized at 1%) 16,674 0.05 10.15 -33.56 47.97

Average long-run excess return, % (winsorized at 1%):
12-month 15,625 0.98 2.70 -11.18 12.27
24-month 13,928 0.97 1.89 -7.11 8.35
36-month 12,376 0.99 1.50 -4.86 6.34
48-month 10,936 1.00 1.27 -3.86 5.37
60-month 9,682 1.04 1.12 -3.04 4.83

Average periodic excess return, % (winsorized at 1%):
0-12 months 15,625 0.49 2.84 -15.04 9.27

13-24 months 13,930 0.25 3.02 -14.26 8.84
25-36 months 12,385 0.33 2.96 -13.39 8.73
37-48 months 10,950 0.37 2.89 -12.73 8.51
49-60 months 9,700 0.42 2.83 -11.98 8.30

Bid-ask spread, % of close price 16,492 13.80 14.30 0.00 492.91
βCAPM , winsorized at 1% 15,400 1.18 0.68 -0.08 3.56
MV , $ million 16,675 2442.93 1485.22 525.09 9675.00
Float 16,438 0.85 0.22 0.03 1.00
V alueRatio 16,314 0.53 0.45 0.00 1.00
M/B ratio, winsorized at 1% 16,636 2.02 1.50 0.54 10.28
1(In the band in May) 16,675 0.29 0.45 0.00 1.00
1(In Russell 2000 in May) 16,675 0.53 0.50 0.00 1.00

This table reports the descriptive statistics of the main stock-level variables used in the analysis. These
statistics are calculated on the annual panel of 300 stocks around both cutoffs in 1998-2018. All returns
are monthly. Bid-ask spread is a 1-year average bid-ask percentage spread. βCAPM is a 5-year monthly
rolling CAPM beta. MV is the proprietary Russell total market value, logarithm of which we use as
one of controls. Float is the proprietary Russell float factor which approximates the fraction of shares
outstanding in free float. V alueRatio is the proprietary Russell value ratio which reflects the fraction of
floated shares assigned to value style. 1(In the band in May) equals 1 if the stock belongs to the band
in May. 1(In Russell 2000 in May) equals 1 if the stock belongs to the Russell 2000 in May. The latter
two variables and their interaction form BandingControls.
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A.11 Descriptive Statistics for Ownership Ratios

Table 10: Descriptive statistics for ownership

Obs. Mean St.Dev. Min Max

Total institutional ownership 14,483 70.27 25.37 0.00 99.99
Total fund ownership 16,675 17.88 11.37 0.00 60.43
Russell 1000 active ownership 16,675 0.50 1.03 -2.55 16.37
Russell Midcap active ownership 16,675 1.85 2.59 0.00 34.00
Russell 2000 active ownership 16,675 4.86 5.13 0.00 34.80
Russell 1000 passive ownership 16,675 0.11 0.16 -0.38 1.17
Russell Midcap passive ownership 16,675 0.12 0.18 0.00 0.84
Russell 2000 passive ownership 16,675 0.89 1.20 0.00 4.75

This table reports the descriptive statistics of the main ownership variables used
in the analysis. These statistics are calculated on the annual panel of 300 stocks
around both cutoffs in 1998-2018. Ownership is defined as the fraction of total shares
outstanding held by investor group in September (in %). Total institutional ownership
is truncated at 100%. Negative values are from short positions available in CRSP.

A.12 Benchmarked Assets

Table 11: Benchmarked assets and market capitalization of the Russell indices

Assets under management, billion US dollars Index market value, billion US
dollars

Russell 1000 Russell Midcap Russell 2000 Russell 1000
Group, total

Russell 2000
Group, total

Russell
1000

Russell
Midcap

Russell
2000Blend Value Growth Blend Value Growth Blend Value Growth

1998 13.7 179.3 224.7 8.3 17.9 50.7 30.0 13.9 27.4 494.6 71.4 10,093.0 2,958.0 1,271.7
1999 20.7 195.8 340.7 7.8 15.5 56.7 28.9 12.4 28.1 637.2 69.5 12,469.2 3,052.5 1,101.8
2000 22.4 154.2 472.7 11.0 12.8 113.8 35.2 12.2 53.4 786.9 100.9 14,476.4 3,459.3 1,271.3
2001 19.4 171.8 333.5 11.3 18.1 84.7 41.5 19.3 42.9 638.8 103.7 12,229.6 3,045.5 1,082.2
2002 14.3 155.8 228.6 13.1 25.8 60.3 50.4 28.5 35.5 497.9 114.4 10,115.7 2,602.6 921.4
2003 15.8 155.5 215.9 14.4 25.1 63.3 51.4 26.8 37.1 490.0 115.3 10,071.1 2,585.9 894.5
2004 19.7 206.2 232.7 22.3 51.5 88.5 79.0 41.6 51.3 620.8 171.9 12,026.9 3,348.9 1,237.5
2005 24.0 244.5 211.5 26.6 76.1 106.1 92.5 50.8 53.6 688.9 197.0 12,740.1 3,787.9 1,362.1
2006 39.1 277.1 203.9 30.9 91.5 120.2 111.8 60.8 61.0 762.7 233.6 13,517.3 4,093.3 1,486.2
2007 53.9 354.4 219.0 37.2 121.0 130.6 131.2 72.5 66.1 916.1 269.7 16,151.5 4,967.5 1,696.1
2008 39.6 281.1 202.6 32.6 93.9 120.1 106.5 57.6 54.7 769.8 218.8 13,610.7 4,083.0 1,240.9
2009 33.2 197.3 135.9 23.7 60.4 78.7 82.2 45.1 39.8 529.3 167.2 9,532.5 2,598.3 886.4
2010 40.7 228.8 147.4 29.7 78.1 91.0 103.2 56.1 46.4 615.8 205.8 11,155.6 3,352.8 1,098.7
2011 50.6 280.6 196.5 41.2 103.0 122.6 142.2 72.0 68.0 794.4 282.2 14,475.4 4,548.3 1,466.9
2012 61.3 269.9 218.6 39.2 95.2 109.5 129.3 63.2 62.5 793.7 255.0 14,570.7 4,383.6 1,351.7
2013 64.9 342.1 257.9 41.0 107.7 118.0 147.3 73.5 76.9 931.5 297.7 17,061.7 5,291.1 1,669.5
2014 91.5 443.0 317.3 66.8 150.3 147.0 180.4 88.2 92.6 1,215.9 361.2 21,077.4 6,804.8 2,045.1
2015 99.4 440.8 345.8 72.2 148.1 155.0 163.4 88.3 95.2 1,261.3 346.8 22,033.5 6,930.4 2,174.9
2016 115.3 422.4 322.1 67.7 136.8 135.0 145.7 79.6 74.8 1,199.3 300.1 21,551.1 6,345.9 1,895.6
2017 121.3 458.2 352.0 80.2 152.0 152.7 177.1 96.7 85.6 1,316.4 359.4 24,589.0 7,157.4 2,253.1
2018 120.0 466.7 415.0 83.8 151.5 168.2 194.9 103.3 104.7 1,405.1 403.0 27,241.1 7,930.4 2,556.7
Mean 51.5 282.2 266.4 36.2 82.5 108.2 105.9 55.4 59.9 827.0 221.2 15,275.7 4,444.2 1,474.5

This table reports the mutual fund and ETF assets benchmarked to Russell indices by year. Russell 1000 Group represents the total for Russell 1000 and Russell Midcap
indices of all styles; Russell 2000 Group – for Russell 2000 indices of all styles. The last three columns report total CRSP market value of all stocks in the indices. The
last row shows the mean of 1998-2018. All data is as of June.
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A.13 Benchmarking Intensity by Style and Type

Figure 6: Decomposition of the Benchmarking Intensity of Foot Locker Inc.

(a) Index Style

(b) Fund Type

These figures plot the evolution of each component of the benchmarking intensity of Foot Locker Inc. stock over
time. Figure (a) plots Russell and CRSP style components. Figure (b) plots the contribution of active and passive
funds.
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A.14 Instrumenting Index Membership

Table 12: Predicting Russell 2000 membership

DR2000: stock in Russell 2000 index in June

1998-2018 1998-2006 2007-2018 1998-2018 1998-2006 2007-2018

1(Rank > cutoff in May) 0.941*** 0.930*** 0.898*** 0.919*** 0.875*** 0.857***
(110.32) (62.33) (62.91) (78.76) (33.81) (45.47)

Band width 300 150
Observations 16,675 4,966 11,709 9,456 2,487 6,969
Adjusted R2, % 96.4 96.1 96.6 94.9 92.9 95.8

This table reports the results of regressing actual index membership dummy in June, DR2000, on its predicted
value based on total market value rank. All regressions include logMV (the logarithm of proprietary total
market value), BandingControls (being in the Russell 2000, being in the band, and their interaction in May,
the latter two are for 2007-2018 only), and year fixed effects. Band width is 300 or 150 stocks around the
cutoffs (rectangular kernel). t-statistics based on standard errors double-clustered by stock and year are in
parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.15 Index Effect in Our Sample

We estimate the following specification:

RetJuneit = αDR2000
it + ζlogMVit + φ′BandingControlsit + ξF loatit + δ′X̄it + µt + εit (16)

In the above specification, DR2000
it is 1 when stock i is in the Russell 2000 on the reconstitution

day in June of year t. RetJuneit is the return of stock i in June of year t, winsorized at 1%. Other
variables are defined as in the main text.

Table 13: The average index effect

Return in June

(1) (2) (3) (4) (5) (6)

DR2000 0.017* 0.017 0.020** 0.018* 0.022** 0.022*
(2.06) (1.69) (2.19) (1.82) (2.24) (1.96)

DR2000 × trend -0.001 -0.001*
(-1.64) (-1.96)

Band width 300 150 300
Observations 16,640 15,135 9,432 8,616 16,640 15,135
Adjusted R2, % 15 16 15 16 15 16

This table reports the results of estimating equation (16) for stocks in the full sample (1998-2018). The
dependent variable is the winsorized stock return in June. The key independent variable (DR2000) is the
Russell 2000 index membership dummy, measured in June. trend is a linear trend. All regressions include
logMV (the logarithm of proprietary total market value), Float (proprietary float factor), BandingControls
(being in the band, being in the Russell 2000 and their interaction in May), and year fixed effects. Columns (2),
(4), and (6) additionally include X̄ (βCAP M and bid-ask spread). Band width is 300 or 150 stocks around
the cutoffs. t-statistics based on standard errors double-clustered by stock and year are in parentheses.
Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

These point estimates are lower but not statistically different from those in Chang, Hong,
and Liskovich (2015). In Table 14 below, we use band width of 100 and show that both data and
methodology differences contribute to the lower estimates. Note that, for comparison purposes,
estimates in the table below are for additions and deletions separately while estimates in the table
above are pooled.
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Table 14: Reconciling index effect estimates

Return in June

1996-2012 1998-2012 1996-2012 +
our ranks

1998-2018 +
our ranks

1998-2018 +
our filters

1998-2018 +
our filters +
wider band

1998-2018 +
our filters +
wider band

(1) (2) (3) (4) (5) (6) (7)

Additions 4.8 4.4 3.8 3.0 2.2 1.7 0.7
(2.55) (2.15) (2.02) (1.66) (1.18) (1.16) (0.69)

Deletions 5.1 4.9 3.9 4.4 4.7 4.1 2.7
(3.01) (2.84) (2.69) (3.36) (3.65) (3.98) (3.71)

This table reconciles the index effect estimates with Chang, Hong, and Liskovich (2015) (abbreviated as CHL). The dependent variable is the
winsorized stock return in June. Band width is 100 stocks around the Russell 2000 cutoff for Additions, and Russell 1000 cutoff for Deletions.
Column (1) replicates CHL estimates on their 1996-2012 sample using their market value ranks and our returns and index membership. Column
(2) does the same for 1998-2012. Column (3) is like (1) but using our proprietary market value ranks. Column (4) is the same for 1998-2018.
Column (5) uses CHL method on our data with our filters for 1998-2018. Columns (6) and (7) use the same filtered data as (5) but increase the
band width to 150 and 300 stocks around the cutoff, respectively. t-statistics are in parentheses.

A.16 Price Pressure and BMI in Narrower Bands

Table 15: BMI change and return in June

Return in June

(1) (2) (3) (4) (5)

∆BMI 0.25** 0.26** 0.25***
(2.43) (2.50) (2.86)

1(∆BMI quartile 1) -0.012*** -0.013***
(-3.24) (-3.27)

1(∆BMI quartile 2) -0.005*** -0.006***
(-2.62) (-3.18)

1(∆BMI quartile 3) 0.002 0.002
(1.41) (1.24)

1(∆BMI quartile 4) 0.007* 0.008*
(1.82) (2.14)

Fixed effect Year Year Stock & Year N N
Controls N Y Y N Y
Observations 8,037 8,037 8,037 8,037 8,037
Adj. R2, % 17.3 17.7 20.7 1.2 1.6

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018). The
dependent variable is the winsorized return of stock i in June in year t (in columns (1)-(3) and demeaned
by year in (4)-(5)). The independent variable is ∆BMIit, the change in the BMI of stock i between June
and May of year t, or the dummies for its quartiles. All regressions include logMV (the logarithm of
proprietary total market value), Float (proprietary float factor), BandingControls (being in the band,
being in the Russell 2000 and their interaction in May). Columns (2), (3) and (5) include controls in X̄
(βCAP M and bid-ask spread). All controls are demeaned by year in columns (4)-(5). The constant is
excluded. Band width is 150 around both cutoffs. t-statistics based on standard errors double-clustered
by stock and year are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.17 Price Pressure and Deflated BMI

Table 16: Deflated BMI change and return in June

Return in June

(1) (2) (3) (4) (5)

∆BMI 0.25** 0.27** 0.27**
(2.33) (2.46) (2.61)

1(∆BMI quartile 1) -0.012*** -0.012***
(-3.45) (-3.62)

1(∆BMI quartile 2) -0.005*** -0.006***
(-2.95) (-3.78)

1(∆BMI quartile 3) 0.003** 0.003**
(1.98) (1.99)

1(∆BMI quartile 4) 0.007** 0.008**
(2.03) (2.52)

Fixed effect Year Year Stock & Year N N
Controls N Y Y N Y
Observations 14,549 14,549 14,549 14,549 14,549
Adj. R2, % 17.2 17.6 19.3 1.3 1.8

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018). The
dependent variable is the winsorized return of stock i in June in year t (in columns (1)-(3) and demeaned
by year in (4)-(5)). The independent variable is deflated ∆BMIit, the change in the BMI of stock i
between June and May of year t deflated to May prices, or the dummies for its quartiles. All regres-
sions include logMV (the logarithm of proprietary total market value), Float (proprietary float factor),
BandingControls (being in the band, being in the Russell 2000 and their interaction in May). Columns
(2), (3) and (5) include controls in X̄ (βCAP M and bid-ask spread). All controls are demeaned by year in
columns (4)-(5). The constant is excluded. Band width is 150 around both cutoffs. t-statistics based on
standard errors double-clustered by stock and year are in parentheses. Significance levels are marked as:
∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.18 Price Pressure and BMI, Russell only

Table 17: Change in Russell indices’ component in BMI and return in June

Return in June ∆BMIRUS , %
(1) (2) (3) (4) (5) (6)

∆BMIRUS 0.29** 0.30** 0.30**
(2.30) (2.34) (2.42)

1(∆BMIRUS quartile 1) -0.010*** -0.010*** -2.55
(-3.23) (-3.26)

1(∆BMIRUS quartile 2) -0.003 -0.003 -0.28
(-1.28) (-1.56)

1(∆BMIRUS quartile 3) 0.005*** 0.004** 0.34
(2.67) (2.48)

1(∆BMIRUS quartile 4) 0.008** 0.009*** 2.58
(2.31) (2.63)

Fixed effect Year Year Stock & Year N N
X̄ controls N Y Y N Y
Observations 14,549 14,549 14,549 14,549 14,549
Adj. R2, % 17.1 17.4 19.1 1.1 1.6

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018). The dependent variable is the
winsorized return of stock i in June in year t (in columns (1)-(3) and demeaned by year in (4)-(5)). The independent variable is
∆BMIRUS

it , the change in the BMI component of stock i between June and May of year t corresponding to benchmarks affected
by the Russell cutoff (the Russell 1000, 2000, and Midcap), or the dummies for its quartiles. All regressions include logMV (the
logarithm of proprietary total market value), Float (proprietary float factor), BandingControls (being in the band, being in the
Russell 2000 and their interaction in May). Columns (2), (3) and (5) include controls in X̄ (βCAP M and bid-ask spread). All
controls are demeaned by year in columns (4)-(5). The constant is excluded. Band width is 300 around both cutoffs. The last
column reports the mean percentage ∆BMIRUS

it in each quartile. t-statistics based on standard errors double-clustered by stock
and year are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 18: Change in BMI and return in June, sample without S&P and CRSP index transitions

Return in June ∆BMI, %
(1) (2) (3) (4) (5) (6)

∆BMI 0.27** 0.28** 0.29**
(2.57) (2.67) (2.71)

1(∆BMI quartile 1) -0.010*** -0.010*** -2.93
(-3.47) (-3.47)

1(∆BMI quartile 2) -0.004* -0.005** -0.39
(-1.97) (-2.47)

1(∆BMI quartile 3) 0.006*** 0.005*** 0.48
(3.43) (3.33)

1(∆BMI quartile 4) 0.008** 0.009** 3.18
(2.16) (2.52)

Fixed effect Year Year Stock & Year N N
X̄ controls N Y Y N Y
Observations 14,299 14,299 14,299 14,299 14,299
Adj. R2, % 17.0 17.4 19.1 1.2 1.6

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018), excluding stocks that
changed membership in S&P 500, S&P 400, and CRSP indices. The dependent variable is the winsorized return of stock i
in June in year t (in columns (1)-(3) and demeaned by year in (4)-(5)). The independent variable is ∆BMIit, the change
in the BMI of stock i between June and May of year t, or the dummies for its quartiles. All regressions include logMV (the
logarithm of proprietary total market value), Float (proprietary float factor), BandingControls (being in the band, being
in the Russell 2000 and their interaction in May). Columns (2), (3) and (5) include controls in X̄ (βCAP M and bid-ask
spread). All controls are demeaned by year in columns (4)-(5). The constant is excluded. Band width is 300 around both
cutoffs. The last column reports the mean percentage ∆BMIit in each quartile. t-statistics based on standard errors
double-clustered by stock and year are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.19 Price Pressure and BMI, by Month

Since it is challenging to compute BMI−E∗[BMI] in the data and use this quantity in our
regressions, we analyze price changes that happen before the reconstitution month and presumably
incorporate price pressures from arbitrageurs that start trading on the expectation that a stock will
experience an index effect in June. We, therefore, look at the return from 1st April until 31st July,
which captures these price pressures. The results are in Table 19 below (counterparts of Column
(2) in Table 2 in the main text) and the price impact is larger (the demand elasticity is smaller).

Some important caveats are in order. Specifically, our identification strategy relies on
controlling for the Russell’s proprietary market value variable as of May, which is the variable
based on which Russell assigns stocks to indices. Having this variable on the right-hand side as of
May, while the outcome variable is the return from April to July, is problematic. Table 19 also
reports the same regression without controls, and the results are similar, but, without controls,
it is harder to defend the exogeneity of ∆BMI. Overall, this analysis suggests anticipatory price
pressures, which is another reason why our baseline estimate of elasticity is an upper bound.

Table 19: BMI change and returns in April-July

Total stock return in period

Period April May June July April-July

Panel A: All baseline controls

∆BMI 0.151* 0.192*** 0.271** 0.037 0.677***
(2.01) (3.51) (2.66) (0.32) (3.67)

Observations 14,547 14,547 14,547 14,547 14,547

Panel B: No controls

∆BMI 0.081 0.079 0.164* 0.021 0.385*
(0.86) (1.63) (1.93) (0.21) (1.78)

Observations 14,547 14,547 14,547 14,547 14,547

This table reports the results of estimating equation (7) in the paper for stocks in the full sample (1998-2018).
The dependent variable is the winsorized return of stock i in a given period in year t. The independent variable
is ∆BMIit, the change in the BMI of stock i between June and May of year t. All regressions in Panel A include
logMV (the logarithm of proprietary total market value), Float (proprietary float factor), BandingControls
(being in the band, being in the Russell 2000 and their interaction in May), controls in X̄ (βCAP M and bid-ask
spread), and year fixed effects. We include only year fixed effects in Panel B. Band width is 300 around both
cutoffs. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance
levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.20 Change in BMI as an Instrument in Narrower Bands

Table 20: Change in BMI as an instrument for change in institutional ownership, with a narrower band

Return in June, % Return in
April-June, %

OLS 2SLS
(1) (2) (3) (4) (5)

Panel A: Second-stage estimates
∆IO, % 0.09*** 3.37 1.44** 1.54** 1.63**

(4.56) (1.20) (2.32) (2.40) (2.06)
Panel B: First-stage estimates
∆BMI, % 0.20*** 0.19*** 0.19***

(5.90) (6.21) (6.97)
DR2000 0.60 -0.40

(1.59) (-1.12)

F-Stat (excl. instruments) 2.74 18.94 38.62 48.61
Hansen J test, p-value 0.07

Controls Y Y Y Y N
Observations 7,244 7,244 7,244 7,244 7,244

This table reports α1 and α from estimating (10) and (11), respectively, in the full sample period (1998-2018). Band
width is 150 stocks around the cutoffs. The dependent variable is return in June. ∆IO the change in total institutional
ownership of stock i from March to June in year t. Specifications in (1)-(4) include logMV (the logarithm of proprietary
total market value), Float (proprietary float factor), BandingControls (being in the band, being in the Russell 2000 and
their interaction in May), X̄ (βCAPM and bid-ask spread), and year fixed effects. Specification in (5) includes year fixed
effects only. Hansen J test is performed under the assumption of HAC disturbances. In parenthesis are t-statistics based
on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.21 BMI as IV, Without Controls

Table 21: Change in BMI as an instrument for change in institutional ownership, without controls

Return in June, %
OLS 2SLS
(1) (2) (3) (4)

Panel A: Second-stage estimates
∆IO, % 0.09*** 1.83*** 1.14** 0.99**

(3.57) (2.98) (2.49) (2.10)
Panel B: First-stage estimates
∆BMI, % 0.17*** 0.19***

(5.73) (6.43)
DR2000 0.67*** 0.39***

(6.36) (3.64)

F-Stat (excl. instruments) 40.42 28.90 41.41
Hansen J test, p-value 0.00

Controls N N N N
Observations 12,862 12,862 12,862 12,862

This table reports α1 and α from estimating (10) and (11) without controls, respectively, in the
full sample period (1998-2018). Band width is 300 stocks around the cutoffs. The dependent
variable is return in June. ∆IO the change in total institutional ownership of stock i from March
to June in year t. All specifications include year fixed effects. Hansen J test is performed under the
assumption of HAC disturbances. In parenthesis are t-statistics based on standard errors double-
clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.22 Demand Change Computed Using Benchmarked Assets

In this section, we show that using the BMI change is, in concept, analogous to using the
change in benchmarked assets used by Chang, Hong, and Liskovich (2015) but BMI change is
continuous and accounts for heterogeneous benchmarks, which has quantitative implications for
the estimate of elasticity.

To evaluate the percentage change in demand, Chang, Hong, and Liskovich use:

∆Demandi,t = ωi,R2000,tBAR2000,t − ωi,R1000,tBAR1000,t

%∆Demandi,t = ∆Demandi,t/MVi,t =
(

BAR2000,t∑
R2000MVk,t

− BAR1000,t∑
R1000MVk,t

)

where BAj,t corresponds to the assets benchmarked to index j in year t (AUM of funds benchmarked
to index j), ωi,j,t to the weight of stock i in index j, and ∑jMVk,t to the total market value of
stocks in index j. Notice that if only Russell 1000 and 2000 weights were changing and float factors
were 1, the change in BMI would be exactly that.

However, when a stock moves across the Russell cutoff, not only does it leave the Russell
1000 and join the Russell 2000, but it also leaves the Russell 1000 Value and/or Growth. It is
important to account for the latter. Table 11 shows that Russell Value and Growth indices are
even larger than blend indices in terms of the assets benchmarked to them. Moreover, since the
Russell Midcap represents the smallest 800 stocks in the Russell 1000, the stock exits it too. The
size of the investor base of the Russell Midcap is just as large as that for the Russell 2000. It is
therefore surprising that most of the literature studying the Russell cutoff has not taken all these
indices into account.

The change in our BMI measure provides the most accurate change in inelastic demand for
the stock available in the literature. To illustrate the importance of heterogeneous benchmarks, we
will use the detailed assets of Russell indices (we assume membership in S&P and CRSP indices is
held constant). A change in demand of a stock moving across the Russell cutoff can be formalized
using the weight of the stock in the indices and the assets benchmarked to them:

∆Demandi,t = ωi,R2000,tBAR2000,t + ωi,R2000V,tBAR2000V,t + ωi,R2000G,tBAR2000G,t

− ωi,R1000,tBAR1000,t − ωi,R1000V,tBAR1000V,t − ωi,R1000G,tBAR1000G,t

− ωi,RMid,tBARMid,t − ωi,RMidV,tBARMidV,t − ωi,RMidG,tBARMidG,t
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The percentage change in demand is:

%∆Demandi,t = ∆Demandi,t/MVi,t

= BAR2000,t∑
R2000MVjt

+
SharesGi,t/Sharesi,t ×BAR2000G,t∑

R2000GMVj,t
+
SharesVi,t/Sharesi,t ×BAR2000V,t∑

R2000V MVj,t

− BAR1000,t∑
R1000MVj,t

+
SharesGi,t/Sharesi,t ×BAR1000G,t∑

R1000GMVj,t
+
SharesVi,t/Sharesi,t ×BAR1000V,t∑

R1000V MVj,t

− BARMid,t∑
RMidMVj,t

+
SharesGi,t/Sharesi,t ×BARMidG,t∑

RMidGMVj,t
+
SharesVi,t/Sharesi,t ×BARMidV,t∑

RMidV MVj,t

where in the second equality we used the definition of market value weights in Russell indices and
where SharesGi,t/Sharesi,t is the fraction of floated shares of stock i assigned to the growth style
by Russell, and SharesVi,t/Sharesi,t to value. We assume that the float factors are, on average, the
same and hence they cancel out.

Assuming that on average a half of stock shares are assigned to value style,93 we can write
the percentage change in demand as:

%∆Demandi,t =BAR2000,t +BAR2000G,t +BAR2000V,t∑
R2000MVj,t

− BAR1000,t +BAR1000G,t +BAR1000V,t∑
R1000MVj,t

− BARMid,t +BARMidG,t +BARMidV,t∑
RMidMVj,t

As Table 22 shows, this percentage change in demand for a stock moving across the cutoff
is substantial and time-varying. For the Russell indices only, it ranges between -1.12% to 9.73%.
It implies that up to 10% of the shares of a stock might be demanded in an index reconstitution
event due to benchmarking.

Finally, the full change in demand, accounting for the Russell and the remaining indices, as
implied by the change in BMI is higher, 6.46% on average. It is evident though that the two comove.
This allows us to evaluate the quantitative implications of the heterogeneity of benchmarks. As
Table 23 shows, averaged Russell-implied demand change of 5.72% results in elasticity of -1.14 for
5% index effect. Also, if we were to omit the Russell Midcap from the calculation, the average
% demand change would be 10.68%. This would imply a significantly higher estimate of price
elasticity of demand of -2.14. For comparison, our BMI-based demand change of 6.46% delivers
elasticity estimate of -1.29 if 5% index effect is assumed.

To compare with the BMI-based upper-bound value of elasticity in the main text, we need to
use our estimate of index effect provided in Table 13: 1.9%. This results in elasticity of -6.46/1.9 =
93Russell uses proprietary stock fundamentals and a proprietary algorithm to assign stocks to value and growth
indices. This assignment is performed within the Russell 1000 and Russell 2000 universes separately. In our data,
we observe the resulting split: some shares of a stock are assigned to value and the rest to growth. On average, the
split is at 50%, even though we observe pure value or pure growth stocks. Naturally, it mirrors that approximately
half of the Russell 1000 or 2000 market value is in value, e.g.,

∑
R2000V MVj,t ≈ 0.5

∑
R2000 MVj,t. Therefore,

our simplifying assumptions are realistic. We have also computed the percentage demand change on the actual
value-growth splits and got identical implications.
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-3.4 which is close to the reported value of -3.7. It is important to keep in mind that the calculation
based on % Demand change averaged over years is necessarily coarser than our regression-based
approach in the main text.

Table 22: Demand change for additions to the Russell 2000

Percentage demand change, %
Full (BMI) All Russell Russell 1000 Russell Midcap Russell 2000

1998 -0.46 -1.12 -4.14 -2.60 5.62
1999 -0.33 -0.78 -4.47 -2.62 6.31
2000 0.99 -0.53 -4.49 -3.98 7.93
2001 0.64 1.54 -4.29 -3.75 9.58
2002 3.29 4.66 -3.94 -3.81 12.42
2003 7.27 5.07 -3.84 -3.98 12.89
2004 6.85 5.24 -3.81 -4.85 13.89
2005 5.99 5.18 -3.77 -5.51 14.46
2006 7.21 5.95 -3.85 -5.93 15.72
2007 6.14 6.20 -3.88 -5.81 15.90
2008 8.32 7.75 -3.84 -6.04 17.63
2009 10.55 8.75 -3.84 -6.27 18.86
2010 9.92 9.06 -3.74 -5.93 18.73
2011 10.83 9.73 -3.64 -5.87 19.24
2012 9.25 9.52 -3.77 -5.57 18.86
2013 10.64 8.90 -3.90 -5.04 17.83
2014 8.58 8.27 -4.04 -5.35 17.66
2015 6.02 6.51 -4.02 -5.42 15.95
2016 7.98 6.49 -3.99 -5.35 15.83
2017 8.29 6.78 -3.79 -5.38 15.95
2018 7.81 7.00 -3.68 -5.09 15.76

Mean 6.46 5.72 -3.94 -4.96 14.62

This table reports the demand change for a stock moving from the Russell 1000 to
Russell 2000 Index, both total, i.e., implied by BMI, and driven by the Russell indices
only. To get the demand change implied by BMI, ∆BMI is averaged for all additions
to the Russell 2000 in year t. Russell 1000, Russell Midcap, and Russell 2000 columns
represent the percentage change in demand corresponding to the assets benchmarked
to the respective indices. Computational details are in Appendix A.22, all data is as of
June for the respective year. The last row shows the mean of 1998-2018.
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Table 23: Sensitivity of Elasticity Estimates

Elasticity estimates for index effect of:
Sample Demand change, % 2% 3% 4% 5%
Panel A: Based on Russell indices

1998-2018 5.72 -2.86 -1.91 -1.43 -1.14
1998-2012 5.08 -2.54 -1.69 -1.27 -1.02
Panel B: Based on BMI

1998-2018 6.46 -3.23 -2.15 -1.62 -1.29
1998-2012 5.76 -2.88 -1.92 -1.44 -1.15

This table reports the sensitivity of the estimates of price elasticity of demand to the size of
index effect. Elasticities are computed based on the approach of Chang, Hong, and Liskovich
(2015), i.e., as -% Demand change / Index effect %. The average demand change values
come from Table 22. Panel A uses % Demand change based on Russell indices, Panel B uses
change in BMI. Second row in each panel reports the estimates for 1998-2012, sample closest
to Chang, Hong, and Liskovich, who find that the price pressure amounts to 5%.

A.23 Implications of Optimized Sampling for Portfolio Weights

Figure 7: Benchmark portfolio weights vs. optimized sampling weights

This figure illustrates the differences between a pure benchmark portfolio (left) and a portfolio constructed using
optimized sampling (right). Horizontal bars represent stocks and their heights represent weights of these stocks in
the respective portfolios.

A.24 Optimized Sampling in Prospectus
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Figure 8: An extract from the prospectus of Fidelity’s ZERO Large Cap index fund.

A.25 Rebalancing Regressions Using a Narrower Band

Table 24: Rebalancing of additions and deletions, by benchmark and fund type

Change in the aggregate ownership of funds with the same benchmark

Stocks ranked < 1000 Stocks ranked > 1000

Benchmark Russell 1000 Russell Midcap Russell 2000
Fund type Active Passive Active Passive Active Passive

Panel A: Change in ownership share

DR2000→R1000 0.117*** 0.114*** 0.353*** 0.122*** -0.493*** -0.882***
(3.09) (3.89) (3.88) (3.36) (-3.77) (-4.30)

DR1000→R2000 -0.095 -0.100*** -0.277*** -0.102** 0.073 0.778***
(-1.69) (-3.25) (-3.83) (-2.84) (0.85) (3.63)

Panel B: Change in holding status

DR2000→R1000 0.391*** 0.467*** 0.276*** 0.469*** -0.335*** -0.929***
(6.96) (8.25) (4.47) (5.17) (-6.55) (-11.38)

DR1000→R2000 -0.326*** -0.886*** -0.247*** -0.703*** 0.087 0.804***
(-5.98) (-6.55) (-5.52) (-4.40) (1.70) (6.86)

Panel C: Ownership share

DR2000 -0.054 -0.076** -0.068 -0.078** 0.166 0.733***
(-1.57) (-2.79) (-1.11) (-2.32) (1.63) (3.47)

Panel D: Holding status

DR2000 -0.169*** -0.306*** -0.048*** -0.635*** 0.015* 0.605***
(-7.96) (-6.49) (-3.48) (-4.92) (1.79) (12.66)

This table reports α1j and α2j from estimating (13) (Panels A and B) and αj from estimating (14) in the full sample period (1998-2018).
Estimation is performed at a stock level for an aggregate portfolio of funds benchmarked to index j (active or passive). Band width is 150
stocks around the cutoffs. The dependent variable in panel A is the change in fraction of shares owned by the respective aggregate portfolio
in stock i from March to September in year t. In panel B, it is the direction of the trade of the group (1 for buy, 0 for no trade, and -1 – for
sell). In panel C, it is the ownership share in September. In panel D, it is a dummy that equals 1 if the stock is held by the aggregate portfolio
in September and 0 if it is not. Regressions in both panel C and D additionally control for the dependent variable in March and include
BandingControls (being in the band, being in the Russell 2000 and their interaction in May). All regressions include logMV (the logarithm
of proprietary total market value), Float (proprietary float factor), X̄ (βCAPM and bid-ask spread), and year fixed effects. In parenthesis are
t-statistics based on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.26 Rebalancing Regressions Using Stock Fixed Effects

Table 25: Rebalancing of additions and deletions, by benchmark and fund type

Change in the ownership by investor group

Stocks ranked < 1000 Stocks ranked > 1000

Benchmark Russell 1000 Russell Midcap Russell 2000
Fund type Active Passive Active Passive Active Passive

Panel A: Change in ownership share

DR2000→R1000 0.115*** 0.100*** 0.327*** 0.107*** -0.579*** -0.850***
(3.82) (3.69) (3.55) (3.25) (-6.45) (-4.41)

DR1000→R2000 -0.074 -0.098*** -0.271*** -0.103*** 0.069 0.813***
(-1.47) (-3.50) (-4.24) (-3.08) (0.84) (4.04)

Panel B: Change in holding status

DR2000→R1000 0.327*** 0.436*** 0.225*** 0.445*** -0.298*** -0.924***
(7.48) (7.81) (4.95) (6.62) (-7.87) (-11.59)

DR1000→R2000 -0.279*** -0.882*** -0.208*** -0.730*** 0.060 0.863***
(-4.94) (-7.10) (-5.35) (-5.02) (1.43) (9.24)

Panel C: Ownership share

DR2000 -0.025 -0.075*** -0.127 -0.072** 0.224* 0.706***
(-0.82) (-2.88) (-1.69) (-2.26) (2.08) (3.57)

Panel D: Holding status

DR2000 -0.170*** -0.360*** -0.064*** -0.667*** 0.007 0.605***
(-10.24) (-7.43) (-5.60) (-5.88) (0.94) (14.37)

This table reports α1j and α2j from estimating (13) (Panels A and B) and αj from estimating (14) in the full sample period (1998-2018).
Estimation is performed at group j level (by benchmark and fund type). Band width is 300 stocks around the cutoffs. The dependent variable
in panel A is the change in fraction of shares owned by the respective investor group of stock i from March to September in year t. In panel
B, it is the direction of the trade of the group (1 for buy, 0 for no trade, and -1 – for sell). In panel C, it is the ownership share in September.
In panel D, it is a dummy that equals 1 if the stock is held by the group in September and 0 if it is not. Regressions in both panel C
and D additionally control for the dependent variable in March and include banding controls. All regressions include log total market value
(logMV ), controls in X̄, and stock and year fixed effects. In parenthesis are t-statistics based on standard errors double-clustered by stock
and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.27 Rebalancing in Subsamples

Table 26: Rebalancing of additions and deletions, by benchmark and fund type

Change in the aggregate ownership of funds with the same benchmark

Stocks ranked < 1000 Stocks ranked > 1000

Benchmark Russell 1000 Russell Midcap Russell 2000
Fund type Active Passive Active Passive Active Passive

Panel A: Change in ownership share

DR2000→R1000 0.047 0.024** 0.183** 0.013 -0.335*** -0.318**
(1.27) (2.14) (2.20) (1.20) (-3.45) (-2.66)

DR1000→R2000 -0.053 -0.026** -0.246** -0.016 0.076 0.311**
(-0.88) (-2.15) (-2.58) (-1.32) (1.08) (2.23)

DR2000→R1000 ×D>2006 0.219*** 0.245*** 0.595*** 0.300*** -0.605*** -1.562***
(3.33) (7.53) (3.99) (7.26) (-3.36) (-6.23)

DR1000→R2000 ×D>2006 -0.173** -0.256*** -0.129 -0.302*** 0.216 1.598***
(-2.51) (-6.70) (-1.07) (-7.19) (1.04) (6.10)

Panel B: Change in holding status

DR2000→R1000 0.261*** 0.413*** 0.171*** 0.362*** -0.255*** -0.801***
(5.12) (6.56) (2.97) (4.25) (-6.35) (-6.72)

DR1000→R2000 -0.245*** -0.742*** -0.172*** -0.618** 0.064 0.935***
(-2.94) (-3.68) (-4.38) (-2.65) (1.38) (7.15)

DR2000→R1000 ×D>2006 0.276*** 0.147 0.343*** 0.226 -0.189** -0.316*
(3.49) (1.66) (3.66) (1.49) (-2.23) (-1.99)

DR1000→R2000 ×D>2006 -0.196** -0.280 -0.242*** -0.262 0.175 -0.284
(-2.17) (-1.33) (-3.48) (-1.05) (1.70) (-1.40)

Panel C: Ownership share

DR2000 -0.028 -0.056*** -0.123** -0.049*** 0.262** 0.577***
(-1.03) (-3.84) (-2.58) (-2.93) (2.48) (4.03)

DR2000 ×D>2006 -0.074* -0.163*** -0.240*** -0.218*** 0.091 1.246***
(-1.96) (-6.03) (-3.13) (-8.67) (0.49) (7.19)

Panel D: Holding status

DR2000 -0.175*** -0.357*** -0.057*** -0.655*** 0.002 0.619***
(-8.86) (-6.84) (-4.98) (-4.59) (0.37) (13.74)

DR2000 ×D>2006 -0.041 0.121** -0.018 0.087 0.008 -0.121**
(-1.55) (2.57) (-1.26) (0.66) (0.97) (-2.68)

This table reports α1j and α2j from estimating (13) (Panels A and B) and αj from estimating (14) as well as the coefficients on interaction with D>2006

dummy that equals 1 in 2007-2018 and zero otherwise. Estimation is performed at a stock level for an aggregate portfolio of funds benchmarked to
index j (active or passive). Band width is 300 stocks around the cutoffs. The dependent variable in panel A is the change in fraction of shares owned
by the respective aggregate portfolio in stock i from March to September in year t. In panel B, it is the direction of the trade of the group (1 for buy,
0 for no trade, and -1 – for sell). In panel C, it is the ownership share in September. In panel D, it is a dummy that equals 1 if the stock is held by
the aggregate portfolio in September and 0 if it is not. Regressions in both panel C and D additionally control for the dependent variable in March and
include BandingControls (being in the band, being in the Russell 2000 and their interaction in May). All regressions include logMV (the logarithm of
proprietary total market value), Float (proprietary float factor), X̄ (βCAPM and bid-ask spread), and year fixed effects. In parenthesis are t-statistics
based on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.28 Rebalancing by Subgroups of Active Funds

Table 27: Rebalancing of additions and deletions, by benchmark and fund activeness level

Change in the holding status of funds with the same benchmark

Stocks ranked < 1000 Stocks ranked > 1000

Benchmark Russell 1000 Russell Midcap Russell 2000
Fund type More active Less active More active Less active More active Less active

Panel A: Active share

DR2000→R1000 0.14*** 0.41*** 0.22*** 0.26*** -0.07** -0.26***
(4.43) (9.30) (4.04) (6.22) (2.21) (-5.75)

DR1000→R2000 -0.08** -0.33*** -0.21*** -0.23*** -0.04 0.12*
(-2.66) (-5.10) (-4.20) (-4.67) (0.78) (2.08)

Panel B: Tracking error

DR2000→R1000 0.17*** 0.42*** 0.25*** 0.28*** -0.07** -0.28***
(5.40) (8.71) (5.97) (5.96) (2.43) (-5.10)

DR1000→R2000 -0.12** -0.33*** -0.19*** -0.27*** -0.02 0.10*
(-2.85) (-6.23) (-4.28) (-5.74) (0.39) (1.83)

This table reports α1j and α2j from estimating (13). Estimation is performed at a stock level for an aggregate portfolio of funds benchmarked
to index j with a particular level of activeness: each year we sort active funds by active share (Panel A) or tracking error (Panel B) into two
groups above and below the median. Band width is 300 stocks around the cutoffs. The dependent variable is the direction of the trade of the
group (1 for buy, 0 for no trade, and -1 – for sell). All regressions include logMV (the logarithm of proprietary total market value), Float
(proprietary float factor), X̄ (βCAPM and bid-ask spread), and year fixed effects. In parenthesis are t-statistics based on standard errors
double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.29 Value and Growth Indices

We document additional rebalancing patterns disaggregating ownership by benchmark style
(value or growth). When a stock moves from the Russell 1000 to Russell 2000, it also enters the
Russell 2000 Value and Growth indices.94 In an analysis similar to the previous section, we show
that active value funds rebalance value stocks and growth funds rebalance growth stocks.

In order to perform a well-specified test as in the main text, we would need to control
for variables that define assignment to value and growth indices. This assignment is not as easy
to predict compared to market cap indices. Using a proprietary database of I/B/E/S forecasts,
B/P, and sales growth, Russell runs a custom probability algorithm to define a share of stock’s
market cap as value or growth. Therefore, we cannot ensure the exogeneity of style dummies, e.g.,
DR2000V alue and DR2000Growth. The best we can do with our data is to control for the Russell value
ratio as of May (fraction of shares assigned to Value style) and the average M/B ratio in the year
prior to the reconstitution.

Because a stock can simultaneously belong to value and growth indices, we estimate the
following specification in levels, similar to (14) in the main text:

Ownijt = αjD
Index
i,t + ψjOwnijt−1 + ζjlogMVit + φ′jBandingControlsit + ξjFloatit

+ πjV alueRatioit + κjM/Bit + δ′jX̄it + µjt + εijt

In the above specifications, DIndex
it is 1 when stock i belongs to Index (Russell 1000, Russell 2000,

Russell 1000 Value, Russell 1000 Growth, Russell 2000 Value, or Russell 2000 Growth) on the
reconstitution day in June of year t. Ownijt is the fraction of shares outstanding owned or a
dummy for whether aggregate portfolio of funds with benchmark j owns it or not. The funds are
aggregated by benchmark and type (active/passive), e.g., active funds benchmarked to the Russell
1000 Value index. V alueRatioit is fraction of shares outstanding assigned to Value style by Russell.
M/Bit is market-to-book ratio of the stock, averaged over the year prior to the reconstitution. All
other variables are as defined in the main text.

As Table 28 reports, both active and passive funds hold portfolios in line with their bench-
marks. For example, passive Russell Midcap Growth funds hold a larger fraction of shares of stocks
in the Russell 1000 Growth universe and a smaller one of stocks in the Russell 2000 Growth universe.
94Russell methodology is such that most of the stocks belong to both indices, i.e., some part of market value is
assigned to value and some – to growth. In other words, a stock is rarely a pure value or growth. Russell has
special indices for pure style stocks that are rather small in AUM.
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Table 28: Rebalancing of additions and deletions, by benchmark, style and fund type
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A.30 Alternative Identification on Ownership Data

Table 29: Active and Passive Ownership

Percentage of firm’s common shares held by

All active All passive Active funds benchmarked to: Passive funds benchmarked to:
Russell
1000

Russell
Midcap

Russell
2000

Russell
1000

Russell
Midcap

Russell
2000

Panel A: Approach of Appel, Gormley, and Keim (2008-2014)

DR2000 -0.67 1.82*** -0.11 -0.91** 0.20 -0.23*** -0.29*** 2.05***
(-1.09) (17.34) (-1.40) (-3.14) (0.39) (-12.19) (-21.64) (12.72)

Panel B: Approach of Appel, Gormley, and Keim and our sample (1998-2018)

DR2000 0.18 0.78*** -0.04 -0.33*** 0.42** -0.11*** -0.11*** 0.92***
(0.80) (4.61) (-1.22) (-3.93) (2.60) (-3.70) (-3.30) (4.39)

This table replicates and extends the findings of Appel, Gormley, and Keim (2021). Panel A reports the results for the original sample,
and panel B - for the extended one. The dependent variable is the fraction of shares in stock i owned by the respective investor group in
September of year t. All regressions include year fixed effects, log total market value (logMV ) and its square, float and banding controls as
in Appel, Gormley, and Keim (2021). Band width is 500. In parenthesis are t-statistics based on standard errors two-way clustered by stock
and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.31 Trend in Tracking Errors of Active Funds

Figure 9: Tracking errors of active funds, by benchmark

This figure plots the AUM-weighted tracking errors of active funds within the largest benchmarks in our sample.
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A.32 Results for Long-Run Returns Measured From July

Table 30: BMI change and long-run returns, measured from July

Excess returns, average over horizon

Horizon (months) 12 24 36 48 60

Panel A: All baseline controls

∆BMI -0.035** -0.027** -0.020*** -0.013** -0.012***
(-2.31) (-2.52) (-4.10) (-2.59) (-2.95)

Observations 13948 13274 12653 11282 10010

Panel B: Baseline controls without stock fixed effects

∆BMI -0.025 -0.019 -0.014* -0.010* -0.010
(-1.32) (-1.20) (-1.80) (-1.75) (-1.68)

Observations 14493 13788 13123 11688 10404

Panel C: LogMV , Float and BandingControls only

∆BMI -0.027* -0.023** -0.019*** -0.014*** -0.012***
(-1.92) (-2.38) (-4.43) (-3.07) (-3.70)

Observations 14842 14126 13445 11999 10595

Panel D: All baseline controls and a narrower band

∆BMI -0.049*** -0.026** -0.021*** -0.013** -0.012**
(-2.96) (-2.75) (-3.75) (-2.72) (-2.56)

Observations 7710 7383 7061 6248 5557

Panel E: All baseline controls and interaction with post-banding dummy

∆BMI -0.035* -0.039*** -0.024*** -0.011 -0.010
(-1.87) (-3.26) (-3.80) (-1.52) (-1.57)

∆BMI ×D>2006 0.000 0.023* 0.008 -0.003 -0.004
(0.01) (1.85) (1.31) (-0.44) (-0.69)

Observations 13948 13274 12653 11282 10010

This table reports the results of the regression of the long-run returns on change in BMI, ∆BMI, in the full sample
(1998-2018). The dependent variable is an average monthly excess return from July in year t over the respective
horizon. Panels A and B include all baseline controls, while Panel C – log total market value, the proprietary ranking
variable, and the banding controls only. Panel E adds an interaction between ∆BMI and D>2006, which equals 1 in
years 2007-2018 and 0 otherwise. In Panels A, B, C, and E, we limit the sample to 300 stocks around the cutoffs.
Panel D limits the sample to 150 stocks around the cutoffs. The baseline controls include logMV (the logarithm
of proprietary total market value), Float (proprietary float factor), BandingControls (being in the band, being in
the Russell 2000 and their interaction in May), X̄ (βCAP M and bid-ask spread), and stock and year fixed effects.
t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance levels are
marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.33 Results for Long-Run Periodic Returns

Table 31: BMI change and long-run periodic returns

Excess returns, average over horizon

Horizon (months) 1-12 13-24 25-36 37-48 49-60

Panel A: All baseline controls

∆BMI -0.047** -0.032* -0.000 -0.007 0.006
(-2.68) (-1.79) (-0.03) (-0.58) (0.50)

Observations 13,813 12,319 10,931 9,739 8,645

Panel B: Baseline controls without stock fixed effects

∆BMI -0.045* -0.033* -0.002 -0.012 -0.003
(-1.93) (-1.82) (-0.14) (-1.29) (-0.31)

Observations 14,351 12,801 11,393 10,100 9,001

Panel C: LogMV , Float and BandingControls only

∆BMI -0.041** -0.031* -0.006 -0.008 0.002
(-2.44) (-1.87) (-0.52) (-0.70) (0.14)

Observations 14,700 13,126 11,609 10,288 9,095

Panel D: All baseline controls and a narrower band

∆BMI -0.049*** -0.015 -0.002 -0.010 0.012
(-3.10) (-0.90) (-0.18) (-0.67) (0.70)

Observations 7,640 6,832 6,082 5,383 4,750

Panel E: All baseline controls and interaction with post-banding dummy

∆BMI -0.047* -0.051* 0.009 -0.002 0.009
(-1.94) (-2.07) (0.57) (-0.11) (0.50)

∆BMI ×D>2006 0.001 0.036 -0.018 -0.010 -0.006
(0.06) (1.52) (-0.98) (-0.60) (-0.32)

Observations 13,813 12,318 10,928 9,731 8,633

This table reports the results of the regression of the long-run returns on change in BMI, ∆BMI, in the full sample
(1998-2018). The dependent variable is an average monthly excess return from September in year t over the respective
horizon. Panels A and B include all baseline controls, while Panel C – log total market value, the proprietary ranking
variable, and the banding controls only. Panel E adds an interaction between ∆BMI and D>2006, which equals 1 in
years 2007-2018 and 0 otherwise. In Panels A, B, C, and E, we limit the sample to 300 stocks around the cutoffs.
Panel D limits the sample to 150 stocks around the cutoffs. The baseline controls include logMV (the logarithm
of proprietary total market value), Float (proprietary float factor), BandingControls (being in the band, being in
the Russell 2000 and their interaction in May), X̄ (βCAP M and bid-ask spread), and stock and year fixed effects.
t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance levels are
marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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A.34 Tests on Additional Stock Characteristics

Table 32: Description of additional stock characteristics

Variable Definition Obs. Mean St.Dev. Min Max

Leverage
(Long-Term Debt + Debt in Current Liabilities
) / (Long-Term Debt + Debt in Current Liabil-
ities + ME)

16,570 0.26 0.23 0.00 1.00

ROA Net Income (Loss) / Assets 16,594 0.03 0.10 -0.93 0.28
Repurchase Purchase of Common and Preferred Stock / ME 15,000 0.02 0.04 0.00 0.22

Div.yield (Dividends Common/Ordinary + Dividends -
Preferred/Preference) / ME 16,367 0.02 0.03 0.00 0.15

Sales growth (Sales year 1 - sales year 0) / sales year 0 15,456 0.33 0.84 -0.74 7.28
Capex/Assets Capital Expenditures / Assets 16,602 0.04 0.06 0.00 0.33
R&D/Sales R&D / Sales 16,556 0.08 0.48 0.00 7.15

1(Acquisition) 1 if Acquisition expenditures are positive and 0
otherwise

16,641 0.43 0.49 0.00 1.00

Asset growth log(Assets year 1) - log(Assets year 0) 15,514 0.22 0.38 -0.71 1.99
Altman Z-score Altman (1968) 16,602 4.11 5.99 -9.10 46.33
SUE Surprise to I/B/E/S reported analyst forecast 15,716 -0.01 0.02 -0.10 0.09
Turnover Volume / Shares outstanding, annualized 16,641 2.62 1.96 0.08 10.09
ILLIQ Amihud (2002), cross-sectionally scaled 16,538 0.01 0.03 0.00 2.15
Short interest ratio Short interest / Shares outstanding 15,461 0.05 0.05 0.00 0.25

This table reports the descriptive statistics of the additional stock characteristics. These statistics are calculated on the annual panel
of 300 stocks around both cutoffs in 1998-2018 using Compustat and CRSP. For accounting variables, the last publicly available value
prior to May is used. For SUE, ILLIQ, and short interest ratio, an average value over the year is used (June-May). All variables are
winsorized at 1%.
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Table 33: Tests on additional stock characteristics

Leverage ROA Repurchase Div.yield

∆BMI -0.090 0.102* -0.001 -0.013
(-1.39) (1.97) (-0.06) (-1.28)

Observations 11,426 11,426 10,159 11,417

Capex/Assets M/B R&D/Sales Asset growth

∆BMI 0.009 -1.400* 0.135 0.530
(0.55) (-2.03) (1.11) (1.64)

Observations 11,427 11,427 11,407 11,422

Sales growth 1(Acquisition) Altman Z-score SUE

∆BMI 0.299 0.104 -1.887 -0.010
(0.52) (0.76) (-0.77) (-1.10)

Observations 11,387 11,434 11,427 10,797

Turnover ILLIQ Bid-ask spread Short interest
ratio

∆BMI 0.718 -0.026 -0.016 0.110***
(1.22) (-1.14) (-0.41) (5.78)

Observations 11,434 11,375 11,329 10,642

This table reports how the change in stock characteristics is related to the change in BMI. Dependent variable is the
3-year change in the respective variable compared to the value prior to the reconstitution. The main independent
variable is the change in BMI, ∆BMI. We limit the sample to 300 stocks around the cutoffs. All regressions include
logMV (the logarithm of proprietary total market value), Float (proprietary float factor), BandingControls (being
in the band, being in the Russell 2000 and their interaction in May), X̄ (βCAP M and bid-ask spread), and year fixed
effects. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance levels
are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Appendix B: Uncertain Benchmark Weights

In this appendix, we derive equations (1) and (2) and, more importantly, add one period to
the model, t = −1, in which investors are uncertain as to whether a stock is going to be included
in a benchmark or not. Our goal is to show how expectations about the stock’s potential entry in
the benchmark influence its returns.

Specifically, our model now features period t = −1, in which there is no cash flow news
and in which stock 1’s weight in the benchmarks of fund managers is uncertain. The vector of
benchmark j weights is therefore ωsj = (kjωsj1, ωj2, . . . , ωjN ), where kj is a benchmark j specific
constant, which may be zero, and ωsj is a random variable realized at t = 0. There are S possible
realizations of ωsj , occurring with probabilities πs, s = {1, . . . , S}. In light of the fact that we have
added one extra period to the model, we now use the notation St and Wt for the stock’s value and
investor wealth, respectively, at time t ∈ {−1, 0, 1}.

Investors choose portfolios at times t = −1 and t = 0 to maximize their expected utility

E [U(W )] ,

where U(W ) = −e−γW . The argument W in the utility function is equal to W1 for direct investors
and wj for fund managers benchmarked to benchmark j.

The main result of this appendix is summarized in the following proposition.

Proposition B1 The stock’s per share return depends on BMI−E∗[BMI], where the expectation
E∗[·] is taken under the risk-neutral measure. Specifically,

S0 − S−1 = γAΣ b

a+ b

 J∑
j=1

λjωj − E∗
 J∑
j=1

λjω
s
j

 , (B1)

where πsMUs∑
s=1,...,S πsMUs

, s = {1, . . . , S}, are the risk-neutral probabilities, withMU s denotes the direct
investor’s marginal utility in state s.

Proof of Proposition B1. We solve the model backwards, first deriving equilibrium
at t = 0, when the only uncertainty is about the realization of the cash flow, and then moving to
t = −1. The direct investor’s problem at time t = 0 is

max
θD

E0[− exp{−γW1}]. (B2)

To evaluate the expectation in (B2), we need the following property. Suppose Y ∼ N(E[Y ], V ar[Y ])
is an N × 1 random vector, α is a (constant) scalar and x is a constant vector. Then

Eeαx
′Y = eαx

′E[Y ]+α2
2 x′V ar[Y ]x. (B3)

Substituting in the budget constraint W1 = W0 + θ′D(D − S0), using property (B3), we can equiv-
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alently represent the direct investor’s problem as follows:

max
θD

[
− exp{−γ[W0 + θ′D(D − S0)− 1

2γθ
′
DΣθD]}

]
.

The solution to this optimization problem is straightforward and yields the demand function (1).
The demand function (2) is derived analogously.95

We now turn to the direct investor’s problem at time t = −1. Substituting (1) and the
budget constraint W0 = W−1 + θ−1(S0−S−1) and using the law of iterated expectations, we arrive
at the following optimization problem:

max
θ−1

E

[
− exp { − γ[W−1 + θ−1(S0 − S−1) + 1

γ
(D − S0)′Σ(D − S0)− 1

2
1
γ

(D − S0)′Σ(D − S0)]}
]
,

where the expectation is over possible realizations of benchmark weights ωj . Substituting S0 from
equation (3), we arrive at

max
θ−1

∑
s=1,...,S

πs

− exp{−γ[W−1 + θ−1

D − γAΣ

θ − b

a+ b

J∑
j=1

λjω
s
j

− S−1


+1

2A

θ − b

a+ b

J∑
j=1

λjω
s
j

′θ − b

a+ b

J∑
j=1

λjω
s
j

]}

 .
The first-order condition with respect to θ−1 is

∑
s=1,...,S

πsMU s

D − γAΣ

θ − b

a+ b

J∑
j=1

λjω
s
j

− S−1

 = 0. (B4)

Equation (B4) is a familiar no-arbitrage condition at time t = −1 stating that E[M s(S0−S−1)] = 0,
where the stochastic discount factor M is given by M s = MU s/

∑
s=1,...,S πsMU s, s = {1, . . . , S}.

In equilibrium, S−1 satisfies (B4). We can therefore use (B4) to express S−1 as an expectation
under the risk-neutral measure, E∗[·],

S−1 = D − γAΣ

θ −
b

a+ b
E∗

 J∑
j=1

λjω
s
j


︸ ︷︷ ︸

E∗[BMI]

 , (B5)

95The optimization problem of a fund manager benchmarked to portfolio j is maxθj E0[− exp{−γ(aRj + b(Rj −
Bj) + c)}] or equivalently, maxθj E0[− exp{−γ((aθj + bωj)′(D−S0)− bω′j(D−S0))}]. Using the change of variables
z ≡ aθj + bωj , we can reduce this problem to that considered in (B2).
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with the risk-neutral probabilities given by

π∗s = πsMU s∑
s=1,...,SMU s

. (B6)

It is easy to see that the risk-neutral measure defined above is a valid probability measure. Note
that markets are complete in our model and hence the risk-neutral probabilities are the same if we
used the marginal utility of either fund manager in (B6). Equation (B1) then follows from (3) and
(B5). �
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Appendix C: Accounting for Differences in Fund Activeness in BMI

In this appendix, we modify our definition of BMI to account explicitly for fund active-
ness. In Appendix C.1, we deviate from the baseline BMI by setting BMIw = BMIPassive +
b

a+bBMIActive, with b
a+b < 1, which differentiates between the AUM of active and passive funds.

Apppendix C.2 considers heterogeneity in activeness across active funds.

C.1 Heterogeneity Across Active and Passive Funds

We report all main tables re-estimated using weighted benchmarking intensity, BMIw. For
the weight b

a+b , we use two leading values from Section 3.3.5: one based on theoretical calibration
of Kashyap, Kovrijnykh, Li, and Pavlova (2021) ( b

a+b = 0.72), and one based on our estimated
sensitivity of fund weights to benchmark weights for a representative active fund ( b

a+b = 0.57). The
estimation details for the latter are in Section C.2.

The results of the re-estimation are as follows. The price impact estimates from the re-
estimated Table 2 are higher (meaning that demand elasticities are smaller), due to a lower quantity
change (∆BMIw < ∆BMI) for the same price change. We would not expect the IV-based elasticity
estimates to change, and indeed they are virtually the same as in the main text (Table 3). Estimated
with the new weighted BMI, the significance of long-run return results (Table 7) does not change.
The coefficients on ∆BMIw are lower, but they still correspond to the expected return difference
of 2.9% and 3% per annum for additions to the Russell 2000 for b

a+b = 0.72 and b
a+b = 0.57,

respectively, which is close to our baseline estimate of 2.8%.
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C.1.1 Theoretical weight b
a+b = 0.72

Table C1: Weighted BMI change and return in June, weight 0.72

Return in June ∆BMI, %
(1) (2) (3) (4) (5) (6)

∆BMIw 0.34** 0.35** 0.36**
(2.53) (2.63) (2.71)

1(∆BMIw quartile 1) -0.010*** -0.010*** -2.28
(-3.60) (-3.60)

1(∆BMIw quartile 2) -0.004** -0.005*** -0.29
(-2.17) (-2.71)

1(∆BMIw quartile 3) 0.006*** 0.006*** 0.36
(3.52) (3.38)

1(∆BMIw quartile 4) 0.008** 0.009*** 2.44
(2.34) (2.75)

Fixed effect Year Year Stock & Year N N
X̄ controls N Y Y N Y
Observations 14,549 14,549 14,549 14,549 14,549
Adj. R2, % 17.1 17.5 19.2 1.3 1.7

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018). The dependent variable
is the winsorized return of stock i in June in year t (in columns (1)-(3) and demeaned by year in (4)-(5)). The independent
variable is ∆BMIw

it , the change in the BMI of stock i between June and May of year t using b
a+b = 0.72, or the dummies

for its quartiles. All regressions include logMV (the logarithm of proprietary total market value), Float (proprietary float
factor), BandingControls (being in the band, being in the Russell 2000 and their interaction in May). Columns (2), (3)
and (5) include controls in X̄ (βCAP M and bid-ask spread). All controls are demeaned by year in columns (4)-(5). The
constant is excluded. Band width is 300 around both cutoffs. The last column reports the mean percentage ∆BMIit in
each quartile. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance levels
are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C2: Change in weighted BMI as an instrument for change in institutional ownership, weight 0.72

Return in June, % Return in
April-June, %

OLS 2SLS
(1) (2) (3) (4) (5)

Panel A: Second-stage estimates
∆IO, % 0.09*** 2.27 1.42** 1.44** 2.29**

(3.75) (1.44) (2.56) (2.59) (2.81)
Panel B: First-stage estimates
∆BMIw, % 0.26*** 0.26*** 0.26***

(6.05) (6.52) (6.60)
DR2000 0.85*** -0.16

(2.78) (-0.59)

F-Stat (excl. instruments) 7.73 21.24 42.54 43.51
Hansen J test, p-value 0.16

Controls Y Y Y Y N
Observations 12,862 12,862 12,862 12,862 12,862

This table reports α1 and α from estimating (10) and (11), respectively, in the full sample period (1998-2018). Band
width is 300 stocks around the cutoffs. The dependent variable is return in June. ∆IO the change in total institutional
ownership of stock i from March to June in year t. Specifications in (1)-(4) include logMV (the logarithm of proprietary
total market value), Float (proprietary float factor), BandingControls (being in the band, being in the Russell 2000 and
their interaction in May), X̄ (βCAPM and bid-ask spread), and year fixed effects. Specification in (5) includes year fixed
effects only. Hansen J test is performed under the assumption of HAC disturbances. In parenthesis are t-statistics based
on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C3: Weighted BMI change and long-run returns, weight 0.72

Excess returns, average over horizon

Horizon (months) 12 24 36 48 60

Panel A: All baseline controls

∆BMIw -0.060*** -0.049*** -0.026*** -0.021** -0.012*
(-2.86) (-3.59) (-3.79) (-2.70) (-2.08)

Observations 13,813 12,318 10,928 9,731 8,633

Panel B: Baseline controls without stock fixed effects

∆BMIw -0.050* -0.043** -0.020** -0.018* -0.012
(-1.91) (-2.58) (-2.30) (-2.10) (-1.48)

Observations 14,351 12,800 11,388 10,091 8,988

Panel C: LogMV , Float and BandingControls only

∆BMIw -0.054*** -0.046*** -0.027*** -0.022*** -0.015***
(-3.07) (-3.92) (-4.41) (-3.35) (-3.25)

Observations 14,700 13,124 11,605 10,279 9,082

Panel D: All baseline controls and a narrower band

∆BMIw -0.069*** -0.048*** -0.026*** -0.021** -0.012*
(-3.47) (-3.55) (-3.16) (-2.83) (-1.83)

Observations 7,640 6,830 6,078 5,378 4,743

Panel E: All baseline controls and interaction with post-banding dummy

∆BMIw -0.060* -0.062*** -0.027*** -0.020* -0.012
(-1.97) (-3.29) (-2.90) (-1.80) (-1.44)

∆BMIw ×D>2006 0.000 0.024 0.001 -0.003 0.001
(0.00) (1.49) (0.15) (-0.26) (0.10)

Observations 13,813 12,318 10,928 9,731 8,633

This table reports the results of the regression of the long-run returns on change in weighted BMI, ∆BMIw using
b

a+b = 0.72, in the full sample (1998-2018). The dependent variable is an average monthly excess return from September
in year t over the respective horizon. Panels A and B include all baseline controls, while Panel C – log total market
value, the proprietary ranking variable, and the banding controls only. Panel E adds an interaction between ∆BMIw

and D>2006, which equals 1 in years 2007-2018 and 0 otherwise. In Panels A, B, C, and E, we limit the sample to 300
stocks around the cutoffs. Panel D limits the sample to 150 stocks around the cutoffs. The baseline controls include
logMV (the logarithm of proprietary total market value), Float (proprietary float factor), BandingControls (being in
the band, being in the Russell 2000 and their interaction in May), X̄ (βCAP M and bid-ask spread), and stock and year
fixed effects. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance
levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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C.1.2 Empirical weight b
a+b = 0.57

Table C4: Weighted BMI change and return in June, weight 0.57

Return in June ∆BMI, %
(1) (2) (3) (4) (5) (6)

∆BMIw 0.40** 0.42** 0.43**
(2.51) (2.61) (2.68)

1(∆BMIw quartile 1) -0.010*** -0.010*** -1.97
(-3.53) (-3.52)

1(∆BMIw quartile 2) -0.004** -0.005*** -0.25
(-2.13) (-2.68)

1(∆BMIw quartile 3) 0.006*** 0.006*** 0.31
(3.44) (3.25)

1(∆BMIw quartile 4) 0.008** 0.009*** 2.10
(2.41) (2.83)

Fixed effect Year Year Stock & Year N N
X̄ controls N Y Y N Y
Observations 14,549 14,549 14,549 14,549 14,549
Adj. R2, % 17.1 17.5 19.2 1.3 1.7

This table reports the results of estimating equation (7) for stocks in the full sample (1998-2018). The dependent variable
is the winsorized return of stock i in June in year t (in columns (1)-(3) and demeaned by year in (4)-(5)). The independent
variable is ∆BMIw

it , the change in the BMI of stock i between June and May of year t using b
a+b = 0.57, or the dummies

for its quartiles. All regressions include logMV (the logarithm of proprietary total market value), Float (proprietary float
factor), BandingControls (being in the band, being in the Russell 2000 and their interaction in May). Columns (2), (3)
and (5) include controls in X̄ (βCAP M and bid-ask spread). All controls are demeaned by year in columns (4)-(5). The
constant is excluded. Band width is 300 around both cutoffs. The last column reports the mean percentage ∆BMIit in
each quartile. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance levels
are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C5: Change in weighted BMI as an instrument for change in institutional ownership, weight 0.57

Return in June, % Return in
April-June, %

OLS 2SLS
(1) (2) (3) (4) (5)

Panel A: Second-stage estimates
∆IO, % 0.09*** 2.27 1.39** 1.41** 2.32**

(3.75) (1.44) (2.58) (2.60) (2.81)
Panel B: First-stage estimates
∆BMIw, % 0.32*** 0.31*** 0.31***

(6.16) (6.67) (6.73)
DR2000 0.85*** -0.17

(2.78) (-0.63)

F-Stat (excl. instruments) 7.73 22.25 44.53 45.25
Hansen J test, p-value 0.15

Controls Y Y Y Y N
Observations 12,862 12,862 12,862 12,862 12,862

This table reports α1 and α from estimating (10) and (11), respectively, in the full sample period (1998-2018). Band
width is 300 stocks around the cutoffs. The dependent variable is return in June. ∆IO the change in total institutional
ownership of stock i from March to June in year t. Specifications in (1)-(4) include logMV (the logarithm of proprietary
total market value), Float (proprietary float factor), BandingControls (being in the band, being in the Russell 2000 and
their interaction in May), X̄ (βCAPM and bid-ask spread), and year fixed effects. Specification in (5) includes year fixed
effects only. Hansen J test is performed under the assumption of HAC disturbances. In parenthesis are t-statistics based
on standard errors double-clustered by stock and year. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C6: Weighted BMI change and long-run returns, weight 0.57

Excess returns, average over horizon

Horizon (months) 12 24 36 48 60

Panel A: All baseline controls

∆BMIw -0.073*** -0.059*** -0.032*** -0.025** -0.014*
(-2.90) (-3.57) (-3.80) (-2.69) (-2.04)

Observations 13,813 12,318 10,928 9,731 8,633

Panel B: Baseline controls without stock fixed effects

∆BMIw -0.061* -0.052** -0.024** -0.022** -0.014
(-1.96) (-2.60) (-2.36) (-2.14) (-1.49)

Observations 14,351 12,800 11,388 10,091 8,988

Panel C: LogMV , Float and BandingControls only

∆BMIw -0.066*** -0.056*** -0.033*** -0.027*** -0.018***
(-3.10) (-3.91) (-4.37) (-3.33) (-3.19)

Observations 14,700 13,124 11,605 10,279 9,082

Panel D: All baseline controls and a narrower band

∆BMIw -0.083*** -0.058*** -0.031*** -0.025** -0.014
(-3.50) (-3.53) (-3.14) (-2.77) (-1.74)

Observations 7,640 6,830 6,078 5,378 4,743

Panel E: All baseline controls and interaction with post-banding dummy

∆BMIw -0.073* -0.075*** -0.033** -0.024* -0.015
(-1.99) (-3.26) (-2.88) (-1.78) (-1.41)

∆BMIw ×D>2006 0.001 0.030 0.002 -0.003 0.001
(0.04) (1.51) (0.17) (-0.22) (0.14)

Observations 13,813 12,318 10,928 9,731 8,633

This table reports the results of the regression of the long-run returns on change in weighted BMI, ∆BMIw using
b

a+b = 0.57, in the full sample (1998-2018). The dependent variable is an average monthly excess return from September
in year t over the respective horizon. Panels A and B include all baseline controls, while Panel C – log total market
value, the proprietary ranking variable, and the banding controls only. Panel E adds an interaction between ∆BMIw

and D>2006, which equals 1 in years 2007-2018 and 0 otherwise. In Panels A, B, C, and E, we limit the sample to 300
stocks around the cutoffs. Panel D limits the sample to 150 stocks around the cutoffs. The baseline controls include
logMV (the logarithm of proprietary total market value), Float (proprietary float factor), BandingControls (being in
the band, being in the Russell 2000 and their interaction in May), X̄ (βCAP M and bid-ask spread), and stock and year
fixed effects. t-statistics based on standard errors double-clustered by stock and year are in parentheses. Significance
levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

C.1.3 Sensitivity of IV Estimates

In this section, we present results of estimating 10 and 11 using a weighted version of BMI:
BMIw = BMIPassive + b

a+bBMIActive and different b
a+b weights.
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As Table C7 below shows, price impact estimates α slightly decrease as we reduce b
a+b

from 1 to 0.4 and then they reduce more drastically as b
a+b gets closer to 0. Mechanically, first-

stage coefficient goes up as b
a+b decreases. Furthermore, we include both ∆BMI and Russell 2000

membership dummy as instruments and run the Hansen J test for each value of b
a+b . It rejects the

model at 95% for the values of b
a+b close to 0. Similar to the non-monotonicity in price impact

estimates that we discussed in Section 3.3.5, this rejection is most likely due to the small relative
size of passive AUM tracking the Russell indices at the beginning of our sample (2% of all AUM).
The model is not rejected at any level of b

a+b if we restrict the sample to after 2003.

Table C7: Sensitivity of IV estimates to b
a+b

Weight b/(a+b) Coef. α t-stat First-stage
coef.

First-stage
F-stat

First-stage R2

(adj. within), %
Coef. α

with 2 IVs

Hansen
J-test,
p-value

1 1.47** (2.57) 0.19 40.2 1.10 1.46 0.19
0.8 1.45** (2.59) 0.24 41.7 1.10 1.43 0.17
0.6 1.42** (2.61) 0.30 44.1 1.11 1.40 0.15
0.4 1.36** (2.63) 0.41 47.9 1.11 1.33 0.12
0.2 1.23** (2.69) 0.64 52.2 1.10 1.20 0.06
0 0.76** (2.65) 1.03 34.2 0.85 0.81 0.00

This table reports estimates of 10 and 11 using a weighted version of BMI and different weights. b
a+b is set to a certain value for all active

funds. ‘Coef. α with 2 IVs’ reports the second-stage estimate with the Russell 2000 membership dummy added as a second instrument. Hansen
J test is performed under the assumption of HAC errors. t-statistics based on standard errors double-clustered by stock and quarter are in
parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.

C.2 Heterogeneity Across Active Funds

In practice, funds differ in their levels of activeness (e.g., Cremers and Petajisto (2009)).
To explore implications of such heterogeneity for our results, we generalize our model and allow
the compensation contract to be manager-specific. Then, each manager has her own a and b

in the heterogeneous-manager version of optimal portfolio choice (equation (2)). Accordingly,
b

a+bBMIActive in equation (12) should be replaced by:

∑
j

ωjλj∑
mj

[
bmj

amj + bmj

λmj
λj

] , (C1)

where λmj is the AUM-share of active fund manager m in benchmark j, so that ∑mj λmj = λj .
Such a BMI can be expressed as the one without heterogeneity across active funds (so that the

expression in (C1) equals
(̂

b
a+b

)∑
j(ωjλj)) only under a strong assumption that the inner sum

above is the same across all benchmarks. Therefore, to correctly account for heterogeneity in b
a+b

across active funds, one would need to precisely estimate this parameter at a fund level. However,
in the absence of manager-level compensation data, estimates of b

a+b are likely to be noisy. So it
might be preferrable to estimate the parameter for funds grouped by their level of activeness.

To account for active fund heterogeneity in constructing BMIw, we consider empirical
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counterparts of b
a+b in the data. All known measures of activeness in the literature, such as Active

Share of Cremers and Petajisto (2009), tracking error, and R-squared of the regression of fund return
on benchmark return (the approach of Morningstar Inc.), have complicated nonliear relationships
with b

a+b in our model. Because of that, it is not straightforward to construct b
a+b as a function of

these measures. Instead, we create a new measure that is closer to the model.
We estimate a coefficient in the regression of fund portfolio weights on its benchmark

weights, to parallel equation (2). We use holdings data of active and passive funds separately.
We interpret βf below as a fund-specific estimate of b

a+b .

Portfolioweightift = βfBenchmark weightift + µit + εift (C2)

In the above specification, Portfolioweightift is fund f portfolio weight in stock i in quarter t
and Benchmark weightift is its benchmark weight in the same stock. In this regression, we use
fund AUM as weights and run a weighted least squares (LS) regression, which corresponds to the
way we weigh fund assets in BMI but the results are robust to using OLS. In Tables C8 and C9,
we report pooled estimates in the full sample and βf for a group of funds, respectively, with and
without stock by quarter fixed effects µit. We break funds into five groups by Active Share (we
construct the groups to be very similar in terms of their AUM).96

As is, such a regression suffers from endogeneity, which may be caused by excluding the
mean-variance portfolio (the first term in equation (2)) or other potential stock-level time-varying
characteristics that are not present in our model, such as liquidity, that may simultaneously affect
benchmark and portfolio weights. That is why the reported estimates should be interpreted as
correlations. Furthermore, to partially address such endogeneity concerns, we also report estimates
when stock by time fixed effects are included. In this specification, we use only across-fund variation
to identify b

a+b of a group of funds: the coefficient will be high if the funds tend to hold more of a
stock when their benchmarks do at a particular point in time.

Figure C1 below depicts the outcome of the estimation of the sensitivity of active fund
portfolio weights to benchmark weights. Passive funds have a sensitivity close to 1, which is
reassuring, while active funds overall have an average sensitivity of 0.57. The figure also illustrates
that the sensitivity monotonically decreases in fund activeness. This is also reassuring, and it
suggests that one could think of Active Share through a lens of (an extended version of) our model
(which incorporates active manager heterogeneity). We report the estimates and details of the
regression in Tables C8 and C9, that show that the R-squared also monotonically decreases in fund
activeness. We obtain similar results if we use funds’ tracking errors as a measure of activeness.
Sparsity in fund holdings considerably affects the sensitivity: active funds’ sensitivity more than
doubles when we exclude zero holdings (columns (7) and (8) in Table C8). It is important even
for passive funds’ holdings: the sensitivity estimate is indistinguishable from one only if we remove
96In the reported results, we use the conditional mean of Active Share for ranking. Results are similar if we split by
tracking error, split by the median, unconditional mean or median, or into groups of a similar number of observations.
We keep AUM split as a baseline as it allows us to immediately see how much the coefficient contributes to BMI.

91

Electronic copy available at: https://ssrn.com/abstract=3689959



zero holdings.97 Adding stock by time fixed effects significantly reduces the estimated sensitivity
for all active groups but does not affect monotonicity.

Figure C1: Sensitivity to benchmark weights by fund type

This figure plots the estimates of sensitivity of fund portfolio weights to benchmark weights with their 95% confidence
intervals. The sensitivity is estimated in groups of funds: all active, all passive, and in groups of active funds based
on their activeness. We rank funds by their active share and form groups of similar AUM. Detailed estimation results
are presented in Appendix Tables C8 and C9.

There are many caveats to the above approach to estimating b
a+b . First, transaction costs

and scale constraints should bias our empirical measure of b
a+b towards zero.98 Second, omitted

variables driving both fund holdings, benchmark membership and prices are likely to bias our
estimates upwards (as specification with stock by time fixed effects strongly suggests). Given the
nonlinearities that our model highlights, it is not clear if any of the reported estimates (with or
without the fixed effects) can be thought of as an upper or lower bound. Noise in the estimates from
this approach is also likely to add measurement error to the weighted BMI if we use the estimates
as weights for active assets. This is why the BMIw which differentiates only between active and
passive AUM as in Section C.1 is our preferred weighted BMI measure.

In sum, our results suggest considerable heterogeneity across active funds. However, given
the above limitations, we are reluctant to use our measures of sensitivity that distinguish across
active funds and leave the exploration of BMI adjusted for active fund heterogeneity for future
research.
97This sparsity relates to the practice of optimised sampling which we discuss in Section 3.3.4.
98There are several reasons why funds may face heterogeneous transactions costs, for example, due to netting in fund
families (Eisele, Nefedova, Parise, and Peijnenburg (2020)).
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Table C8: Sensitivity of fund portfolio weights to benchmark weights

Portfolio weight

Sample Active Passive Active Passive
Active

benchmark
only

Passive
benchmark

only

Active
nonzero

benchmark

Passive
nonzero

benchmark
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Weighted least squares
Benchmark weight 0.572*** 0.966*** 0.305*** 0.949*** 0.523*** 0.967*** 0.684*** 0.992***

(21.12) (226.92) (6.50) (43.89) (15.57) (53.25) (10.05) (160.98)
Observations 86,489,038 7,540,536 86,446,180 7,527,686 83,790,766 7,330,750 7,022,270 4,960,600
Adj. R2, % 14.1 91.4 23.6 92.5 25.4 93.2 31.8 95.1
Fixed effects None None Stock * time Stock * time Stock * time Stock * time Stock * time Stock * time

Panel B: Ordinary least squares
Benchmark weight 0.529*** 0.817*** 0.209*** 0.735*** 0.487*** 0.823*** 0.563*** 0.940***

(15.15) (89.83) (3.27) (20.80) (13.78) (31.34) (7.28) (46.04)
Observations 86,489,038 7,540,536 86,446,180 7,527,686 83,790,766 7,330,750 7,022,270 4,960,600
Adj. R2, % 8.5 44.6 15.7 52.0 15.9 55.0 27.5 64.1
Fixed effects None None Stock * time Stock * time Stock * time Stock * time Stock * time Stock * time

This table reports LS estimates of specification (C2). Panel A estimates weighted LS regression using fund AUM as weights, Panel B estimates
an ordinary LS regression. Columns (1)-(4) include all observations, columns (5) and (6) exclude stocks outside fund benchmark, and columns
(7) and (8) additionally exclude benchmark stocks that funds do not hold (with zero portfolio weight). t-statistics based on standard errors
double-clustered by benchmark and quarter are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01.
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Table C9: Sensitivity of fund portfolio weights to benchmark weights, by activeness group

Portfolio weight

Sample Most active Active group 2 Active group 3 Active group 4 Least active
(1) (2) (3) (4) (5)

Panel A: No fixed effects

Benchmark weight 0.234*** 0.456*** 0.591*** 0.650*** 0.720***
(8.27) (18.88) (15.46) (19.77) (28.34)

Observations 47,343,930 16,638,679 10,959,323 5,864,996 5,670,496
Adj. R2, % 1.0 7.6 19.1 24.6 33.6

Panel B: Stock by quarter fixed effects

Benchmark weight -0.249** 0.223*** 0.332*** 0.397*** 0.578***
(-2.64) (5.67) (4.67) (17.12) (28.38)

Observations 47,294,720 16,606,761 10,929,983 5,836,123 5,617,615
Adj. R2, % 14.5 21.5 31.7 47.7 48.6

Mean active share, % 90.1 78.7 69.1 61.7 48.8

This table reports weighted LS estimates of specification (C2) in each group of active funds. Fund AUM are used as
weights. We rank the funds by their lagged mean active share and form groups of approximately the same total AUM in
each quarter. Last row reports the average active share in each group across time. t-statistics based on standard errors
double-clustered by benchmark and quarter are in parentheses. Significance levels are marked as: ∗p<0.10; ∗∗p<0.05;
∗∗∗p<0.01.
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