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1 Introduction

We propose a joint factor model for stocks, bonds, and options, motivated by the theories

developed in Du, Elkamhi, and Ericsson (2019), Geske (1979), and Merton (1974). In Mer-

ton’s (1974) framework, stocks and bonds issued by the same firm represent claims on the

same underlying assets of the firm. Specifically, equity (debt) securities can be viewed as a

long (short) position in call (put) option on the firm’s assets. Du, Elkamhi, and Ericsson

(2019) augment the Merton (1974) model with time-varying and priced asset volatility, and

show that this can explain both the level and the dynamics of credit spreads and equity

volatilities. Geske (1979) shows that an option contract written on corporate securities,

such as an equity option, can be viewed as an option on an option, or a compound option.

Consequently, as long as the three markets are partially integrated, they share a common

factor structure. Our paper is devoted to characterizing this factor structure.

There is an intensive discussion in the literature on the degree of integration between the

bond and stock markets (see, for example, Choi and Kim, 2018, Chordia, Goyal, Nozawa,

Subrahmanyam, and Tong, 2017, and Sandulescu, 2023). The literature has also documented

that option trading activity can influence the prices of individual stocks and bonds issued by

the firm (Easley, O’Hara, and Srinivas, 1998). Similarly, informed option trading demand

pressure can have an impact on option prices (Gârleanu, Pedersen, and Poteshman, 2008).

There is also substantial evidence of information flow between individual equity option and

stock markets (An, Ang, Bali, and Cakici, 2014), as well as individual equity option and

bond markets (Cao, Goyal, Xiao, and Zhan, 2023).1 More specifically, variables constructed

with option market information predict future returns of individual stocks (Neuhierl, Tang,

1An, Ang, Bali, and Cakici (2014), Bali and Hovakimian (2009), Cremers and Weinbaum (2010), and
Xing, Zhang, and Zhao (2010) find a significantly positive cross-sectional relation between call-minus-put
option implied volatility spreads and future returns of optionable stocks. Johnson and So (2012) find a
positive relation between the ratio of trading volume in the stock to option trading volume and future stock
returns. The findings of these studies suggest a link between investors’ demand for options and future returns
of the underlying stock. Cao, Goyal, Xiao, and Zhan (2023) propose a similar argument for the connection
between equity options and future returns of corporate bonds.
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Varneskov, and Zhou, 2023), and stock characteristics are important determinants of future

option returns (Bali, Beckmeyer, Moerke, and Weigert, 2023) and future bond returns (Bali,

Goyal, Huang, Jiang, and Wen, 2022).

As a result, we argue that option traders’ expectations and their actual trades in the

option markets have a significant impact on the future prices of individual stocks and bonds,

which eventually influence the firms’ asset returns. To be able to capture these complicated

dynamics in the bond, option, and stock markets and their impact on future firm values,

we extend the instrumented principal component analysis (IPCA) of Kelly, Pruitt, and Su

(2019) to allow for heterogeneity in how firm characteristics inform the pricing of bonds,

options, and stocks. Hence, our IPCA-based joint factor model produces a more realistic

expected return benchmark for the firm.

We note that our objective is not to propose a new structural model. Instead, motivated

by Geske (1979) and an extended version of the Merton (1974) model by Du, Elkamhi, and

Ericsson (2019), we propose a reduced-form factor model that jointly prices stocks, bonds,

and options. The joint factor model can be justified within a compound option pricing

model with stochastic asset price and asset volatility dynamics (Doshi, Ericsson, Fournier,

and Seo, 2022). Since it is difficult to accurately characterize asset value and asset volatility

dynamics for individual firms, we rely on joint IPCA with a large set of bond, option, and

stock characteristics to back out a joint risk factor model from the time-series and cross-

section of bond, option, and stock returns.

Main Findings: We extend the IPCA framework of Kelly, Pruitt, and Su (2019) by

accommodating asset class-level differences in how characteristics instrument the variation

in factor sensitivities, while maintaining a joint factor structure for firms’ bonds, options,

and stocks. In our joint IPCA methodology, individual asset returns for all three asset

classes are driven by the same K latent factors through time-varying factor loadings, which

we parameterize as a linear function of observable firm characteristics. We allow this linear
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function to vary for each asset class and use a large number of firm-level characteristics,

which incorporate information from the firms’ bonds, options, and stocks.

Specifically, we use the stock-level characteristics from Jensen, Kelly, and Pedersen (2023)

and the option-level characteristics from Bali, Beckmeyer, Moerke, and Weigert (2023). We

use the set of bond-level characteristics provided by Dickerson, Mueller, and Robotti (2023),

which we augment by several additional characteristics. In total, we end up with 254 firm

characteristics, of which 38 are based on the bond, 63 on the option, and 153 on the stock.

From this exhaustive list of characteristics, we use 163 firm characteristics that result in

significant Sharpe ratios (SRs) for at least one asset class. We form characteristic managed

portfolios (CMPs) from these characteristics and find that 120 generate a significant SR for

one asset class, 33 for two, and nine generate a significant SR for all three bond, option,

and stock portfolios. This preliminary analysis already shows that asset classes are partially

integrated, with the same conditioning information producing valuable trading strategies

across the three asset classes.

Our estimated joint IPCA describes returns of bonds, options, and stocks well. A five-

factor model explains 17% of the total variation of overall asset returns; 12% for options,

16% for stocks, and 30% for bonds. We use a simple aggregation scheme for the returns of a

hypothetical investor looking to hold an equal investment in a firm’s bond, option, and stock.

Based on this aggregation scheme, we find that adjusting aggregate returns for risk using

our joint IPCA model leaves only 9.9% of alphas significant, with an average unconditional

R2 of 33.8%.

Because the joint IPCA estimates a single factor structure for the three asset classes,

we can back out the implied mean-variance efficient (MVE) tangency portfolio. Cochrane

(2009) shows that shocks to the MVE portfolio are directly proportional to shocks to the

stochastic discount factor. Our five-factor joint IPCA model generates an annualized SR

of 6.9 in-sample (IS) and 6.4 out-of-sample (OOS). We also show that t + 1 returns to the
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MVE portfolio are related to the VIX in t (Martin, 2017), and that the joint factor structure

allows the model to benefit from substantial diversification benefits, by investing in multiple

assets of a firm. The MVE’s subportfolios of bonds, options, and stocks are uncorrelated or

even negatively correlated. Finally, we show that the net-of-fees SR remains large and above

2.2 for realistic-to-high levels of relative transaction costs (Frazzini, Israel, and Moskowitz,

2018; Choi, Huh, and Shin, 2021).

The common factor structure of joint IPCA is essential for explaining returns across bonds,

options, and stocks. We assess how well the model captures unconditional alphas for the

163 × 3 CMPs of bonds, options, and stocks. Unconditionally, we find that 219 CMPs

generate full-sample average returns that are statistically significant at the 5% level. After

adjusting for risk using our five-factor joint IPCA model, only 11 alphas remain significant;

1 for bonds, 7 for options, and 3 for stocks.

Next, we investigate the commonality in return predictability in three different ways. We

first analyze whether there is commonality in explanatory power for bonds, options, and

stocks. We sort bonds, options, or stocks into decile portfolios by the model’s respective

R2. When sorting by one asset class, we also document the resulting R2 for each decile for

the remaining two asset classes. If the markets are partially integrated, we expect that, for

stocks that are well priced by the joint IPCA, bonds of the same firms and options on the

same stock are well-priced too. Empirically, we find that in deciles sorted by bond’s R2, the

R2 spread of sorting options and stocks is 16% and 7%, respectively. For a sort on option

R2s, the bond and stock spread is 18% and 17%, respectively; and for a sort on stock R2,

the decile R2 spread for bonds and options is 11% and 20%, respectively.

Second, we study which factors are most important for explaining returns of each asset

class. In particular, are all five factors required for each asset class? To answer this question,

we iteratively “turn off” the influence of each of the five factors and document the resulting

drop in R2 across asset classes. We find that two factors are responsible for roughly 86%
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of the model’s ability to explain bond returns, three factors for roughly 79% of the model’s

ability to explain option returns, and three factors for 87% of the model’s explanatory power

for stock returns. The five common factors improve the explanatory power for each asset

class. The first factor captures the aggregate market effects and is equally important for

explaining bond, option, and stock returns. The second factor captures a large degree of

bond and stock return variation, while the third and fourth factors capture primarily option

and stock return variation. The fifth factor captures bond and option variation. We also

show that the most important characteristics to instrument variation in sensitivities to the

joint latent factors are shared across asset classes. At the same time, this exercise highlights

the importance of incorporating a vast range of characteristics of bonds, stocks, and options.

A third way of understanding the usefulness of the joint IPCA is to compare its perfor-

mance with IPCA models estimated separately for bonds, options, and stocks. We have

mentioned earlier that our joint IPCA leaves only 11 statistically significant alphas from a

total of 219 CMPs. We find that each of the three single IPCA models, estimated sepa-

rately for one asset class, perform worse. The five-factor bond-based IPCA fails to explain

193 alphas, the option-based IPCA 34, and the stock-based IPCA 173. We also consider

a combined factor model, which uses two factors estimated separately for each asset class.

This combined model fails to explain 31 alphas. Furthermore, we find that the joint IPCA’s

tangency portfolio outperforms the tangency portfolio implied by each of the single asset

class IPCA models.

Finally, we also compare our joint IPCA with existing benchmark bond-, option-, and

stock-level factor models put forth by the literature to explain returns within one of the

three asset classes. We find that the bond market CAPM fails to explain the returns of 206

CMPs, the two-factor straddle model of Coval and Shumway (2001) a total of 171, and the

five-factor model of Fama and French (2015) augmented with momentum leaves 210 CMP

returns unexplained. Even a combination of the 9 factors (1 bond, 2 option, and 6 stock

factors) fails to explain 182 alphas.
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Since IPCA factors are latent in nature, it is useful to investigate the dynamics governing

the joint five-factor structure. We first show that the five factors capture significant variation

in macroeconomic fundamentals. As an example, we show that the second latent factor

hedges macroeconomic uncertainty and intermediary risks, with a positive relation to the

macroeconomic uncertainty measure of Jurado, Ludvigson, and Ng (2015), and a negative

relation to the intermediary capital ratio of He, Kelly, and Manela (2017). The first IPCA

factor is exposed to intermediary risks, and the fourth factor captures the spread between

overall macroeconomic risks and the risks of the intermediary sector. We furthermore show

that the five latent factors capture important information from the three asset classes that

cannot be replicated by the three macroeconomic indicators or the nine benchmark factor

models. For this, we propose a novel method to interpret latent factors, which replaces

each factor’s realizations by the fitted values from regressing it on a set of macroeconomic

indicators and benchmark factors.

Related Literature: Our paper contributes to the literature investigating the integration

of the bond and stock markets. If the two markets are (partially) integrated, risk premia

should show up in both markets. Koijen, Lustig, and Van Nieuwerburgh (2017) show that

some bond factors are priced in the cross-section of stock returns, whereas Chordia, Goyal,

Nozawa, Subrahmanyam, and Tong (2017) argue that equity and corporate bond returns

require a different set of risk factors, and Choi and Kim (2018) find that the risk premia

of stock factors differ when using bond returns, accounting for the implied hedge ratio. On

the modeling front, Du, Elkamhi, and Ericsson (2019) extend the Merton (1974) structural

credit risk model with priced asset variance risk and show that this resolves the credit risk

puzzle.

Doshi, Ericsson, Fournier, and Seo (2022) extend the compound option pricing model of

Geske (1979) by allowing for idiosyncratic volatility and asset value jumps in the stochastic

volatility model of Du, Elkamhi, and Ericsson (2019). While Collin-Dufresne, Junge, and
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Trolle (2022) argue that CDX and SPX options are disintegrated, the model setup of Doshi,

Ericsson, Fournier, and Seo (2022) allows the authors to jointly explain the level and time

variation of both SPX and CDX options. Culp, Nozawa, and Veronesi (2018) derive the

notion of “pseudo firms” from the insights of the Merton (1974) model using traded SPX

option prices and show that the credit risk puzzle can be explained by a risk premium for

tail and idiosyncratic asset risks. There is, however, little research on the joint integration

of bond, option, and stock markets.2 Our paper adds additional insights into the risk-return

trade-off of bonds, options, and stocks from a reduced form factor model with a shared factor

structure.

There is a vast literature on factor models for equity returns (see, for example Fama

and French, 2015 and Hou, Xue, and Zhang, 2015), corporate bonds (Kelly, Palhares, and

Pruitt, 2023), currency (Lustig, Roussanov, and Verdelhan, 2011), commodity futures (Szy-

manowska, de Roon, Nijman, and van den Goorbergh, 2014), and cryptocurrencies (Liu,

Tsyvinski, and Wu, 2022). Despite the proliferation of factor models for stocks, bonds, and

other asset classes, the literature on factor models for option returns is relatively sparse,

with a few recent advances in Goyal and Saretto (2022) and Horenstein, Vasquez, and Xiao

(2022). Kozak, Nagel, and Santosh (2020) advocate for a low-dimensional factor structure.

We achieve parsimony by estimating a model of common latent risk factors across asset

classes, which exploits the markets’ partial integration. Just five factors are sufficient to

accurately and jointly express the risk-return trade-off of bonds, options, and stocks.

2In a contemporaneous working paper to ours, Chen, Roussanov, Wang, and Zou (2024) estimate a
conditional latent factor model to identify common risk factors for bonds, options, and stocks and find that
the return predictors with zero loadings on the latent systematic risk factors receive a larger premium than
the compensation for risk.
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2 Theoretical Motivation

Following Bates (1996), Du, Elkamhi, and Ericsson (2019), Heston (1993), and Leland (1994),

one can assume that the dynamics of a firm’s asset value and asset variance are governed

by a stochastic volatility-jump diffusion model. Although the market prices of diffusive

and volatility risks are assumed to be constant in the aforementioned theoretical models, in

practice they are known to exhibit significant time-series variation and nonlinearity. Thus,

it is very challenging to provide an accurate characterization of firm value dynamics in a

theoretical setting. As discussed by Du, Elkamhi, and Ericsson (2019) and Doshi, Ericsson,

Fournier, and Seo (2022), since there is no closed form solution for the firm, equity, or debt

value, earlier studies either calibrate or simulate the stochastic volatility models to obtain

the empirical counterparts of asset price and asset volatility dynamics.

In a model where corporate securities are options on a firm’s assets, option contracts on

these can be viewed as options on options, or compound options (Geske, 1979). Doshi,

Ericsson, Fournier, and Seo (2022) extend the compound option pricing model of Geske

(1979) by allowing for idiosyncratic volatility and asset value jumps in the stochastic volatility

model of Du, Elkamhi, and Ericsson (2019). Doshi, Ericsson, Fournier, and Seo (2022) also

adopt the simulation approach in Du, Elkamhi, and Ericsson (2019) and show that their

model jointly explains the level and time variation of both equity index (SPX) and credit

index (CDX) option prices well OOS. In the model of Doshi, Ericsson, Fournier, and Seo

(2022), aggregate unlevered asset return and variance shocks are the only two sources of

priced risk. Thus, financial instruments such as the equity index, credit protection index,

and equity/credit index options derive their risk premia from these two sources. However,

each instrument has exposure to its own specific states of the world, and hence differs in its

loading on the common sources of risk. As a result, while sources of risk are shared across

markets, each instrument is priced quite differently.

Based on the above theoretical models, we propose a joint factor model for bonds, stocks,
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and options that can be justified within a compound option pricing model with stochastic

asset price and asset volatility dynamics. As shown by Du, Elkamhi, and Ericsson (2019)

and Doshi, Ericsson, Fournier, and Seo (2022), it is very difficult to estimate directly the

asset value and asset volatility dynamics proposed in their model. Hence, both studies

follow a calibration or simulation approach. In addition to the complications about the

estimation of stochastic-volatility/jump type models for stock and bond returns, we argue

for the presence of sizeable information flow between equity option and underlying stock

markets. Thus, changes in equity option prices may have a significant impact on the future

prices of individual stocks and bonds, which eventually influence the firm’s asset returns.

To incorporate these complex dynamics in the option, stock, and bond markets and their

impact on future firm values, we rely on joint IPCA with a large set of stock, bond, and

option characteristics to back out a joint risk factor model for the firm’s asset returns. As

in Doshi, Ericsson, Fournier, and Seo (2022), we explicitly allow for heterogeneity in the

sensitivity of bonds, options, and stocks to the common set of risk factors.

The benefits of a joint factor model are manifold: first and foremost, we retain a parsimo-

nious factor structure across many asset classes, yielding a lower number of common factors,

as soon as the included asset classes are (partially) integrated. Kozak, Nagel, and Santosh

(2020) advocate for focusing on a small number of factors. Estimating the common factor

structure for many assets serves the purpose so that the resulting factor structure is valid for

pricing all these asset classes. Second, a joint factor model allows us to estimate a tangency

portfolio, which incorporates the covariance structure between asset classes. This in turn

informs us about the dynamics of the stochastic discount factor, which spans the joint pric-

ing of multiple asset classes. From a trading perspective, the tangency portfolio across asset

classes informs researchers and practitioners alike about relative investment opportunities in

the three markets. Third, we learn about commonalities and differences in the risk-return

tradeoff of different asset classes in a unified model. By investigating the importance of the

latent factors and observable characteristics in instrumenting betas at the asset class level,
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we can assess the relative degree of integration of bond, option, and stock returns of the same

firm. Our proposed extension of IPCA (Joint IPCA) combines these benefits in a simple and

intuitive model setup.

3 Econometric Methodology

One of our contributions is to extend the well-established IPCA by Kelly, Pruitt, and Su

(2019). We accommodate asset class-level differences in how characteristics instrument the

variation in factor sensitivities, while maintaining a joint factor structure across bonds,

options, and stocks. Consider an asset i, which is part of one of three asset classes, AC ∈

[Bonds, Options, Stocks]. We can express asset i’s excess return RAC
it+1 as:

RAC
it+1 = βAC ′

it Ft+1 + εit+1, βAC
it = z′itΓ

AC
β . (1)

Individual returns are driven by K latent factors, Ft+1, through factor loadings βAC
it , which

we parameterize as a linear function of L observable characteristics zit. The mapping function

from characteristics to betas is given by an L×K matrix ΓAC
β that is specific to asset class

AC. If there are Nt+1 assets with available data, then we can express the asset pricing

equation as:

RAC
t+1 = βAC

t Ft+1 + εAC
t+1, (2)

where βAC
t = ZtΓ

AC
β is a Nt+1 ×K matrix of betas using the Nt+1 × L matrix Z of charac-

teristics.

It is easy to see that the factor sensitivity of the stock and bonds of the same firm need

not be the same. In the classic Merton-type firm model (Merton, 1974), a firm’s stock can be

modeled as a call option on the firm’s assets, while its debt is the combination of a risk-less

bond and a written put. The sensitivities of these two option portfolios to the same set of

factors will naturally differ. Likewise, delta-hedged equity option returns capture differences
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in the expectation and realization of variance and jump risks, among others. Their factor

sensitivity is therefore also going to differ from the sensitivity of the underlying stock, which

itself is not directly exposed to these higher-order terms.

The innovation in our paper, therefore, is to allow for differences in the mapping function

ΓAC
β for each asset class. Instead of forcing Γβ to be the same for bonds, options and stocks,

we allow for class-level variation in how asset characteristics inform us about the risk-return

tradeoff.

Consider three Nt+1 × 1 vector of returns, RB
t+1, R

O
t+1, and RS

t+1, representing returns for

bonds, options, and stocks, respectively. The factor sensitivities are given by βB
t = ZtΓ

B
β ,

βO
t = ZtΓ

O
β , and βS

t = ZtΓ
S
β for the three asset classes. Note that since the set of L

characteristics is the same for each asset class, we allow for stock/option characteristics to

influence bond returns in addition to bond characteristics, and so on.

It will be convenient to stack the three return vectors together into one 3Nt+1 × 1 vector

Rt+1 as:

Rt+1 ≡


RB

t+1

RO
t+1

RS
t+1

 =


βB
t

βO
t

βS
t

Ft+1 +


εBt+1

εOt+1

εSt+1

 = βtFt+1 + εt+1,

with

βt ≡


βB
t

βO
t

βS
t

 =


ZtΓ

B
β

ZtΓ
O
β

ZtΓ
S
β

 = ZtΓβ, Zt ≡


Zt 0 0

0 Zt 0

0 0 Zt

 , Γβ ≡


ΓB
β

ΓO
β

ΓS
β

 , (3)

where βt is a 3Nt+1×K matrix of loadings, Zt is a 3Nt+1×3Lmatrix of stacked characteristics,

and Γβ is the 3L×K mapping matrix from characteristics to loadings (0 is a Nt+1×L matrix

of zeros). Eq. (3) is our central Joint IPCA asset pricing equation.
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It is useful to define a 3L× 3L matrix Wt as (0 below is a L× L matrix of zeros):

Wt = Z ′
tZt/Nt+1 =


Z ′

tZt 0 0

0 Z ′
tZt 0

0 0 Z ′
tZt

 /Nt+1, (4)

and a 3L× 1 matrix Xt+1 as:

Xt+1 ≡


XB

t+1

XO
t+1

XS
t+1

 = Z ′
tRt+1/Nt+1 =


Z ′

tR
B
t+1

Z ′
tR

O
t+1

Z ′
tR

S
t+1

 /Nt+1. (5)

It is readily seen that Xt+1 are the returns of CMPs. Since we have L characteristics and

three asset classes, we have 3L such portfolios.

With Xt+1 and Wt at hand, the first order conditions for Eq. (3) are:

F̂t+1 =
(
Γ̂′
βWtΓ̂β

)−1

Γ̂′
βXt+1 (6)

vec
(
Γ̂β

)
=

(
T−1∑
t=1

Wt ⊗ F̂t+1F̂
′
t+1

)−1(T−1∑
t=1

Xt+1 ⊗ F̂t+1

)
.

While this system of first-order conditions still does not admit a closed-form solution, it

is quickly solvable using an alternating least-squares procedure. Latent factor realizations

are obtained from month-by-month cross-sectional regressions of the stacked vector of the

excess returns of all assets Rt+1 on βt (Fama and MacBeth, 1973). Γβ are the coefficients of

regressing CMP returns on factors Ft+1 interacted with asset characteristics Zt. Given the

structure of the system, the estimation of Γβs is essentially three separate regressions, one

for each asset class.

Identifying a unique set of parameters is important in latent factor models, as they are

identified only up to a rotation. Models ΓβFt+1 and ΓβRR−1Ft+1 are identical for any
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rotation matrix R. Following Kelly, Pruitt, and Su (2019), we impose the normalization

that Γ′
βΓβ is the identity matrix, that the unconditional second moment matrix of Ft+1 is

diagonal with descending diagonal entries, and that the time-series average of Ft+1 is positive.

The identification assumptions do not restrict the model’s ability to explain returns of bonds,

options, and stocks, but merely serve as a way to pin down unique parameters of the model.

4 Data

4.1 Returns & Characteristics

Returns. Our analyses use returns of three different asset classes. Excess stock returns

(corrected for delisting) are from CRSP.

We obtain corporate bond data for the sample period from August 2002 to August 2022

using the dataset provided by Dickerson, Mueller, and Robotti (2023), which extends the

WRDS Corporate Bond Database.3 The corporate bond return in month t is defined as

RB
t =

Pt + At + Ct

Pt−1 + At−1

− 1, (7)

where Pt is the last price at which bond was traded in month t, At is accrued interest on the

same day of bond prices, and Ct the coupon payment in month t, if any. This dataset also

alleviates the issue of faulty outliers in TRACE, which Dick-Nielsen, Feldhütter, Pedersen,

and Stolborg (2023) document, by imputing the affected returns from TRACE with quote-

implied returns.

Finally, we consider daily delta-hedged option returns following Bali, Beckmeyer, Moerke,

and Weigert (2023). Let the option contract’s value be denoted by O and the value of the

underlying stock as S. Then, the delta-hedged dollar gain over the period (t, t+ 1) is given

3The dataset can be downloaded at https://openbondassetpricing.com/.
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by:

Πt+1 = Ot+1 −Ot −
N−1∑
n=0

∆tn

(
Stn+1 − Stn

)
−

N−1∑
n=0

Rftn

365
(Otn −∆tnStn) . (8)

We scale the dollar gain by the initial value of the investment portfolio (Cao and Han, 2013):

RO
t+1 =

Πt+1

|∆tSt −Ot|
. (9)

We retain call contracts that expire on the third Friday of the month after the next, or in

roughly 50 days. To assure the validity of the option prices when entering the position, we

select contracts that have a standard contract multiplier of 100, an offer greater than the

bid, where the bid exceeds $0.125, the bid-ask spread is less than 50% of the mid quote, the

contract’s implied volatility is available, and the quotes adhere to American option bounds.

We also require that the contract has positive open interest or volume today, and that it

was traded at least once in the seven days leading up to the trade initiation on the last

trading day of month t. We carefully assure that filters are only applied at the time of trade

initiation to avoid forward-looking information to affect our return estimates (Duarte, Jones,

Mo, and Khorram, 2023).

For the estimation of the joint IPCA models, returns are winsorized at the 1% level per

asset class. For inference, we use non-winsorized returns throughout this paper. We also

scale returns of each asset class by their full-sample standard deviation, to increase their

comparability and assure that they roughly contribute equally to the estimation of IPCA.

Limited by the availability of bond return data through TRACE, we start our sample in

August of 2002. Our sample period includes the great recession in 2008-2009, as well as the

Covid-selloff at the beginning of 2020.

Contract Selection. For each firm×month observation, we select a representative bond

and option. Without this step, given that many firms have multiple bonds and options,

information about options and bonds would invariably dominate that of stocks in the joint
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model estimation. Choosing one bond and one option also facilitates the comparison of the

model’s ability to price assets of different classes. For the bond market, we follow Dick-

Nielsen, Feldhütter, Pedersen, and Stolborg (2023) and calculate the aggregate corporate

bond return for firm i in month t+ 1 as

RB
it+1 =

∑
k∈R

wk
itR

k
it+1, (10)

where R is the set of bonds with available returns in month t+ 1. We weight each bond by

its market value at the end of month t. Whenever a firm has bonds with missing returns,

Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023) advocate for imputing its return

from the observed average bond return, RB
it+1, using a duration adjustment:

R̃B
it+1 = RB

it+1

DA
t

DR
t

, (11)

where DA
t is the weighted-average duration of all bonds of firm i, and DR

t of bonds with

valid returns in t+1. Bond characteristics are also aggregated by weighting with each bond’s

market value at the end of month t.

For options, we select all at-the-money calls, defined as
∣∣∣ lnK/S

iv×
√
ttm

∣∣∣ ≤ 1,4 that expire on the

third Friday of month t + 2. Among these calls, we use the contract with the strike price

closest to the current value of the underlying as the representative contract for each firm.

Given that our objective is to study the joint factor structure across bonds, stocks, and

options, we require that each included firm is either optionable or has a traded bond with

valid transaction data in TRACE, during our sample period from August 2002 through

August 2022. This restricts our sample to the largest and most liquid stocks. In total, we

have valid bond returns for 1,565 unique firms, valid option returns for 5,755 unique firms

and valid stock returns for 5,958 unique firms, yielding a total of 1.2 million asset×month

4Where iv is the contract’s implied volatility, ttm its time-to-maturity, K its strike price, and S the price
of its underlying stock.
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observations.

Characteristics. Option-level characteristics are taken from Bali, Beckmeyer, Moerke,

and Weigert (2023) and stock-level characteristics from Jensen, Kelly, and Pedersen (2023).

We use the set of bond-level characteristics provided by Dickerson, Mueller, and Robotti

(2023), which we augment by several additional characteristics. In total, we end up with

254 firm characteristics, of which 38 are based on the bond, 63 on the option, and 153

on the stock. For each characteristic, we impose a limit on how often it can be missing.5

Specifically, we require that each characteristic is available for at least half of all observations.

This filter drops seven characteristics. Following standard practice in the literature, we rank

each characteristic cross-sectionally and standardize its values to lie between −0.5 and 0.5

for each month.

To weed out characteristics that essentially convey the same information, we identify those

pairs that have correlation, |ρ| ≥ 95%. From each identified pair, we retain that characteristic

which is available for more asset×month observations. This drops 23 characteristics from

our dataset, for a total of 224 firm characteristics (254 in total, 7 dropped for availability,

23 for correlation). A complete list of the 254 characteristics is provided in Appendix A,

including their academic source, and an indicator whether it is included in the final dataset,

and if not, for which reason.

4.2 Characteristic-Managed Portfolios Across Asset Classes

Our joint dataset covers a large number of bond, option, and stock characteristics. We now

provide first evidence of the benefits associated with a joint consideration of this information

set when making investment decisions in either of the three asset classes. For each of the

l = 1, . . . , L characteristics, we compute the investment performance of the associated CMPs,

5See Beckmeyer and Wiedemann (2023), Bryzgalova, Lerner, Lettau, and Pelger (2022), and Freyberger,
Höppner, Neuhierl, and Weber (2022) for a discussion of missing data in cross-sectional asset pricing.
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calculated as in Eq. (5) using bonds, options, or stocks as the investable assets. Panel A of

Table 1 reports the twelve CMPs of bonds with the largest absolute SRs. We also provide

the resulting SRs for the CMPs of options and stocks using the same 12 characteristics. The

remaining panels replicate this exercise for the top-12 CMPs of options and stocks.

Panel A of Table 1 shows that the SRs of CMPs of bonds are large. For example, a long-

short bond portfolio sorted on the stock’s short-term reversal (S ret 1 0) achieves an IS SR of

1.55. In contrast, using the same information in the options or stock market fails to generate a

significant SR.6 The average absolute SR of the top-12 CMPs of bonds is 0.94. In comparison,

the value-weighted bond market portfolio constructed from our sample has a SR of just

0.41 in the same sample period. Sorting bonds on the idiosyncratic volatility of the stock

(S iskew) generates a significant SR of between 0.80 and 1.11, depending on the factor model

used. Sorting by the spread between the option’s implied and the underlying’s past realized

volatility (O S ivrv roll252D) generates a large and negative SR of −1.20. Interestingly, the

bond’s short-term reversal is the only bond-level characteristic to enter the top-12 CMPs

of bonds with a Sharpe of 0.78.7 The second most profitable bond characteristic for CMPs

of bonds is bond duration at rank 28 with a SR of 0.61. This is already first indicative

evidence of the importance of considering characteristics of the firm, not only of the bond,

when deciding to invest in corporate bonds. We also find that the characteristics of the top-

12 CMPs of bonds are also able to generate meaningful investment performance for CMPs

of options and to a lesser degree for CMPs of stocks. For example, idiosyncratic skewness

(calculated using Hou, Xue, and Zhang (2015) four-factor model) generates a significant SR

for bonds, options, and Sharpe ratio for stocks significant at the 10% level. Among the

twelve characteristics, the average absolute SR of CMPs of options is 1.18 and that of CMPs

of stocks is 0.40. Nine of the top-12 bond characteristics generate a significant Sharpe ratio

among options, and one (four) a significant Sharpe ratio among stocks at the 1% (10%)

6We test for statistical significance of the SR following Lo (2002).
7We use the short-term reversal adjusted for bond microstructure noise, as advocated by Dickerson,

Mueller, and Robotti (2023).
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significance level.

The SRs of CMPs of options (Panel B of Table 1) are significantly higher than those of

the CMPs of bonds, with an average absolute SR of 3.25. Sorting on the difference between

at-the-money call and put implied volatilities (O S civpiv, see Bali and Hovakimian (2009))

generates the largest absolute SR of 3.65, followed by risk-neutral kurtosis (O S rnk 30).

Similarly, information about the option’s embedded leverage and past return momentum

(O B mom roll252D, see Heston, Jones, Khorram, Li, and Mo (2023) and Beckmeyer, Fil-

ippou, and Zhou (2023)) also generate highly significant SR. None (two) out of the 12

most important characteristics for options also generate significant SRs for CMPs of bonds

(stocks). Nine out of the top-12 characteristics for CMPs of options use option information

in their construction.

The top-12 CMPs of stocks (Panel C of Table 1) have an average absolute SR of 1.16.

In general, option-based information is most valuable for stock-based investments, with the

implied short-selling fee (O shrtfee, see Muravyev, Pearson, and Pollet, 2022) and option

frictions (O fric, see Hiraki and Skiadopoulos, 2020) both generating an absolute SR of

1.5. Muravyev, Pearson, and Pollet (2022) show that the implied shorting fee explains

much of the outperformance of common stock-market anomalies. Sorting stocks on this

characteristic alone is already a profitable investment strategy in the absence of fees and

implementation costs. The same characteristic also generates a significant SR for CMP of

options. Other informative characteristic’s are the stock’s mispricing (S mispricing mgmt

Stambaugh and Yuan, 2017), the ratio of sales to book equity (S sale bev), and investment

growth (S inv gr1).

Overall, out of the 224 characteristics, 62 generate an insignificant SR at the 10% level

for all of the three asset classes, 120 have a significant SR for one asset class, 33 for two,

and nine for all three (bonds, options, and stocks). We use these 163 (120 + 33 + 9 +

a constant) characteristics as inputs in modeling the risk-return tradeoff for each firm. Of
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Table 1: Characteristic-managed Portfolios

The table shows annualized SRs of the 12 characteristic-managed portfolios that generate the largest absolute
SRs for bonds in Panel A, options in Panel B, and stocks in Panel C. ***, **, * denote significance at the
1%, 5%, 10% level using the significance test for SRs of Lo (2002).

Bonds Options Stocks

Panel A: Top 12 Bond CMPs

S ret 1 0 1.55*** −0.09 −0.15
O S ivrv roll252D −1.20*** −2.38*** −0.21
S iskew hxz4 21d 1.11*** −0.98*** 0.56*
O S modos roll252D −0.94*** −0.99*** −0.36
S iskew capm 21d 0.89*** −1.01*** 0.40
S rmax5 rvol 21d 0.87*** 0.15 −0.50*
S eq dur 0.85*** −2.43*** 0.20
S ni me −0.80** 2.76*** −0.24
S iskew ff3 21d 0.80** −0.98*** 0.51
O S nopt −0.78*** 1.17*** 0.16
B strev 0.78*** −0.81*** 0.53*
S inv gr1 −0.74** 0.47 −0.98***

Abs. Mean 0.94 1.18 0.40

Panel B: Top 12 Option CMPs

O S civpiv −0.02 −3.65*** 1.30***
O S rnk 30 −0.29 3.47*** 0.00
O S ivud 30 −0.24 3.35*** −0.11
O S ivarud 30 −0.37 3.35*** −0.10
O S atm civpiv −0.03 −3.29*** 1.45***
O C embedlev −0.44 3.29*** 0.16
O B mom roll252D −0.18 3.23*** 0.10
O S rnk 182 −0.37 3.21*** −0.14
S eqnpo me −0.60 3.13*** 0.08
S cash at 0.30 −3.05*** 0.13
S ni ivol 0.40 −3.05*** 0.29
O C theta −0.42 2.93*** 0.15

Abs. Mean 0.30 3.25 0.33

Panel C: Top 12 Stock CMPs

O S shrtfee 0.21 2.64*** −1.51***
O S fric −0.17 −2.53*** 1.51***
O S atm civpiv −0.03 −3.29*** 1.45***
O S vs level −0.29 −2.70*** 1.44***
O S civpiv −0.02 −3.65*** 1.30***
S mispricing mgmt 0.23 0.77* 1.08***
S sale bev −0.05 0.69 1.05***
S inv gr1 −0.74** 0.47 −0.98***
S nncoa gr1a −0.67* 1.36*** −0.92***
S noa gr1a −0.71* 1.52*** −0.91***
S dolvol 126d −0.51 1.60*** −0.90**
S inv gr1a −0.66** 1.47*** −0.88***

Abs. Mean 0.36 1.89 1.16
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these 163 characteristics, 4 (44, 114) are derived from the firm’s bond (option, stock) plus

the constant. We use the restricted set of characteristics to avoid overfitting on in-sample

information. Our procedure represents an ex-ante feature selection step common in the field

of machine learning. The estimation of joint IPCA outlined in Section 3 consequently seeks to

explain the returns of the 163×3 CMPs that on their own offer the most valuable investment

performance. We note that we have fitted models on the entire set of 224 characteristics

with very similar results.

5 A Joint Factor Model

5.1 Performance of Joint IPCA

Performance Metrics. We evaluate the model’s IS and OOS performance using the met-

rics proposed by Kelly, Palhares, and Pruitt (2023):

Total R2 = 1−

∑
i,t

(
Rit+1 − β̂itF̂t+1

)2∑
i,t R

2
it+1

XS R2 =
1

T

∑
t
R2

t , where R2
t = 1−

∑
i

(
Rit+1 − β̂itF̂t+1

)2∑
iR

2
it+1

Relative Pricing Error =

∑
i α

2
i∑

i R
2

i

, where αi =
1

T

∑
t

(
Rit+1 − β̂itF̂t+1

)
. (12)

Total R2 quantifies the model’s success in explaining average returns for the three asset

classes. It aggregates information both over months t and across assets i and compares the

amount of variation in asset returns explained by joint IPCA’s that is not already explained

by a simple benchmark of predicting a zero excess return. Gu, Kelly, and Xiu (2020) argue

that a historical mean tends to underperform a zero-forecast for single stocks OOS, which

inflates a competing model’s Total R2. Next, we quantify how well a model explains cross-

sectional returns. XS R2 is similar to the average R2 of Fama and MacBeth (1973) cross-
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sectional regressions performed each month. Finally, we record the average relative pricing

error, which denotes how well a candidate model explains differences in average returns

across assets. We prefer models that generate large R2s and small relative pricing errors.

To assess the model’s ability to explain average returns OOS, we estimate Joint IPCA

using information until month t, which gives us the time t estimate of Γ̂AC
β,t ∀AC and therefore

each asset’s β̂it. Then, we calculate the OOS factor realizations F̂t+1 with a cross-sectional

regression, as described in Eq. (6), using betas estimated through time t and asset return

information realized in t + 1. Consequently, the factors are obtained using asset weights

which are known already in month t. We require at least 90 months of historical data to

estimate the model. Therefore, our OOS test begins in February 2010.

In- and Out-of-Sample Performance. We vary the number of latent factors K of the

joint ICPA model. We consider K ∈ [1, ..., 5]. The general consensus in the literature is

to focus on parsimonious models with a low number of factors (Kozak, Nagel, and Santosh,

2020). Fama and French (2018) and Kelly, Palhares, and Pruitt (2023) advocate for at

most six and five factors for the U.S. equity and corporate bond markets, respectively. It is

important to note that joint IPCA has the additional benefit of estimating factors designed

to explain returns of all three asset classes simultaneously. If bond, option, and stock markets

are (partially) integrated, this will require a lower total number of factors to explain average

returns for all three asset classes, yielding a parsimonious factor model applicable to each of

the asset classes.

We show in Table 2 the IS and OOS performance metrics described in Eq. (12). We

calculate these metrics for all three asset classes combined as well as separately for bonds,

options, and stocks. We find that a single factor explains 12% of the total return variation,

which varies between 4% for options and 24% for bonds. The Total R2 increases significantly

as we increase the number of factors K. For K = 5, joint IPCA explains 17% of the total

return variation across bonds, stocks, and options; 12% for options, 16% for stocks, and 30%
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Table 2: In- and Out-Of-Sample Metrics

The table shows IS and OOS performance metrics of joint IPCA models with K factors. The definition of
each performance metric is given in Eq. (12). We consider K ∈ [1, ..., 5] factors. The IS period runs from
August 2002 through August 2022, the OOS period starts in February 2010, as we require at least 90 months
of training data.

K → 1 2 3 4 5

IS OOS IS OOS IS OOS IS OOS IS OOS

Panel A: Total R2

Total 0.12 0.11 0.14 0.12 0.15 0.13 0.16 0.14 0.17 0.15
Bonds 0.25 0.25 0.26 0.27 0.27 0.28 0.29 0.32 0.30 0.34
Options 0.04 0.03 0.08 0.06 0.10 0.08 0.12 0.10 0.12 0.10
Stocks 0.12 0.12 0.15 0.14 0.15 0.14 0.16 0.14 0.16 0.14

Panel B: XS R2

Total 0.08 0.08 0.11 0.10 0.12 0.11 0.13 0.12 0.13 0.12
Bonds 0.17 0.11 0.17 0.13 0.18 0.09 0.21 0.20 0.24 0.21
Options 0.03 0.01 0.06 0.04 0.08 0.06 0.10 0.08 0.10 0.08
Stocks 0.09 0.10 0.11 0.11 0.12 0.12 0.13 0.12 0.13 0.12

Panel C: Relative Pricing Error

Total 0.97 0.99 0.93 0.95 0.90 0.91 0.87 0.87 0.86 0.87
Bonds 0.84 1.06 0.84 1.00 0.85 1.07 0.79 0.92 0.75 0.94
Options 0.98 0.99 0.94 0.95 0.90 0.90 0.87 0.87 0.87 0.87
Stocks 0.90 0.95 0.85 0.93 0.91 0.95 0.80 0.91 0.80 0.92

for bonds.

OOS Total R2s are remarkably close to their IS counterparts. The parsimonious structure

of joint IPCA guards against overfitting and explains bond, option, and stock returns well

IS and OOS. For the same five-factor model, we continue to explain 15% of the variation in

returns with no forward-looking information, which ranges from 10% for options to 14% for

stocks and 34% for bonds.

The fraction of cross-sectional variation explained (XS R2) is in general comparable to the

Total R2s. The magnitudes tend to be slightly smaller, but the general trend is that option

returns are the hardest to price and bond returns the easiest to price. The same applies to

the relative pricing errors in Panel C of Table 2.

We find that the joint IPCA model can explain as much variation of stock returns as

reported by Kelly, Pruitt, and Su (2019). We focus on the sample of stocks that are option-
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able or that the firm’s bonds are traded and recorded in the TRACE database. We therefore

provide confirming evidence that the IPCA structure is able to explain stock return variation

well, even in a current sample between 2002 and 2022. The R2s for options are slightly larger

than those reported in Goyal and Saretto (2022), but within the same ballpark. Finally, the

performance metrics for bonds are lower than those reported by Kelly, Palhares, and Pruitt

(2023), but again within the same ballpark. Given the best performance of a model with

five joint factors, we will focus our subsequent analysis on the case of K = 5.

Expected vs. Realized Returns. Figure 1 shows that joint IPCA explains the realized

returns of the CMPs described in Section 4.2 well. The IS fit is shown in the left panel, the

OOS fit in the right panel. We consider K = 5 latent common factors. We compare the

model-implied expected return for each CMP with the average realized excess return over

the sample period. For comparability, we normalize all portfolios to have 10% annualized

volatility. For CMPs of bond, option, and stocks, the figure shows that the Joint IPCA

produces a scatter plot that is closely aligned with the 45◦-line, demonstrating small IS and

OOS pricing errors. The IS fit is best for bonds and stocks, with a slight tilt in the slope for

options: realized option returns tend to be less variable than expected by the model. The

OOS fit remains remarkably stable, with joint IPCA explaining average returns well with a

near-symmetric dispersion around the 45◦-line.

Explaining Aggregate Returns. Our factor model is constructed to explain returns

across asset classes which puts us in the unique position to learn about the underlying joint

factor structure. As an approximation, we now investigate the predictability of aggregate

returns, for which we assume an equal investment in a firm’s bond, option, and stock,

requiring that we observe returns for all three asset classes:

Rfirm
it+1 =

(
RB

it+1 +RO
it+1 +RS

it+1

) /
3. (13)
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Figure 1: Expected vs. Realized Returns

The figure shows a scatter of returns expected by the five-factor joint IPCA model versus average realized
returns of the 163 × 3 characteristic-managed portfolios described in Section 4.2 (163 for each asset class).
In the left panel, we show the results for the IS period from August 2002 through August 2022. The right
panel shows the results for iteratively fitting a model with no forward-looking information. The OOS period
begins in February 2010. We distinguish CMPs of bonds, options, and stocks through different colors.
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Figure 2: Unconditional αs and Time-Series R2 of Aggregate Returns

The left panel of the figure shows average aggregate returns as defined in Eq. (13) in dark blue color and
their unconditional αs that remain significant at the 5%-level after adjusting for risk using the K = 5 factor
joint IPCA model in teal color. The right panel shows the resulting R2s.

The left panel of Figure 2 shows the histogram of unconditional average aggregate returns

in dark blue color and unconditional alphas after adjusting for risk using our K = 5 factor
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joint IPCA model in teal color. We only show the 9.9% of alphas that remain significant

after the risk adjustment. Overall, the joint IPCA model explains aggregate returns well,

which is also evident in the resulting R2s shown in the right panel of Figure 2. The average

firm-level R2 is 33.8%.

5.2 Stochastic Discount Factor

We next seek to understand the implications that joint IPCA has for the stochastic discount

factor. For that, we calculate the mean-variance efficient (MVE) tangency portfolio implied

by a K = 5 joint factor model. Joint IPCA can exploit the covariance between the asset

classes to form efficient mean-variance portfolios across asset classes. The MVE portfolio

is of particular interest, as shocks to its returns are directly proportional to shocks to the

firm-level stochastic discount factor M (Cochrane, 2009):

Mt+1 − Et[Mt+1] = b×
(
RMVE

t+1 − Et[R
MVE
t+1 ]

)
, (14)

Returns of the MVE portfolio inform us about the risks most correlated with the marginal

utility of the marginal investor that is simultaneously active in bonds, options, and stocks.

Table 3: Sharpe Ratio of the Tangency Portfolio

The table shows the IS and OOS SRs of the tangency portfolio implied by a K-factor joint IPCA model.
The IS period runs from August 2002 through August 2022, the OOS period starts in February 2010, as we
require at least 90 months of historic data.

K → 1 2 3 4 5

In-Sample 0.61 0.78 3.02 6.42 6.88
OOS 0.56 1.02 1.79 5.65 6.36

We report IS and OOS SRs of the tangency portfolios implied by a K-factor joint IPCA

model in Table 3. We again consider K ∈ [1, ..., 5]. A single factor generates a SR of 0.61 IS

and 0.56 OOS. Increasing the number of factors monotonically increases the resulting IS and

OOS performance: a five-factor model generates a SR of 6.88 IS and 6.36 OOS, with only a
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Figure 3: Tangency Portfolio Over Time

The figure shows the returns at time t + 1 of the tangency portfolio for a K = 5 factor joint IPCA model
in black. We overlay the VIX at time t in gray. The sample period runs from August 2002 through August
2022.

slight performance degradation OOS, suggesting a remarkable stability in the usefulness of

the extracted information from the three asset classes. These SRs are significant at the 1%

level using the statistical test of Lo (2002).8

Eq. (14) shows that shocks to the tangency portfolio are directly proportional to shocks to

the stochastic discount factor. Figure 3 therefore overlays the tangency portfolio’s returns in

t+1 over time with the VIX at time t. Martin (2017) shows that an option portfolio similar

to that of the VIX can be used to derive a lower bound on the expected market return. The

correlation between the VIXt and RMVE
t+1 is 0.55: whenever the VIX is low, so are the returns

of the tangency portfolio in the next month. In times of crises, both the VIX and the returns

to the tangency portfolio tend to spike. For example, in November of 2008, the tangency

portfolio returns 3.9% with a VIX above 50. During the Covid-selloff at the beginning of

2020, we once again find large returns of the MVE portfolio, with the VIX above 50.

8In Section 6 we compare the SRs produced by joint IPCA to those obtained within the individual asset
classes.
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Decomposition to three asset classes. Since the MVE portfolio is a portfolio of latent

factors, Ft+1, and the factors themselves are linear combinations of individual security returns

(first row of Eq. (3)), we can express the tangency portfolio as:

RMVE
t+1 =

∑
i∈{B, O, S}

witRit+1 =

Nt+1∑
i=1

wB
itR

B
it+1 +

Nt+1∑
i=1

wO
itR

O
it+1 +

Nt+1∑
i=1

wS
itR

S
it+1, (15)

where wit is asset i’s weight in the MVE portfolio.

Using Eq. (15), we can identify the contribution of each asset class to the returns of the

tangency portfolio. We decompose the returns of the tangency portfolio obtained withK = 5

latent factors in Panel A of Table 4. The portfolio has an average monthly return of 1.75%

with a volatility of 0.88%, resulting in the SR of 6.88 as discussed above. The portfolio’s

return is positively skewed (0.86) and the portfolio has small drawdowns of at most 1.44%.

The remaining columns of Panel A in Table 4 show how the performance is attributable

to investments in corporate bonds, options, and stocks. The sub-portfolio of bonds has an

average return of 0.13% (SR of 1.60). The sub-portfolio of options contributes an average

return of 1.38% (SR of 5.83), and the sub-portfolio of stocks has an average return of 0.24%

(SR of 2.22).

Trading in options (Ofek, Richardson, and Whitelaw, 2004) as well as in corporate bond

markets is known to be expensive (Bessembinder, Spatt, and Venkataraman, 2020). To

understand if the proposed tangency portfolio would be implementable in real-time, we

measure the portfolio’s monthly turnover and transaction costs. For this, we define the

portfolio’s relative turnover as:

Turnover =
∑

t

(∑
i
|wit − wit−1|

)/
T. (16)

Transaction costs are assumed to be proportional in the amount of trading. Kelly, Palhares,

and Pruitt (2023) choose the upper bound of the transaction cost estimates for corporate
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Table 4: Return and Variance Decomposition of Joint Tangency Portfolios

The table shows a decomposition of the joint tangency portfolio’s return profile. We provide average monthly
returns, standard deviations (Std), annualized Sharpe ratios (SR), skewness (Skew), kurtosis (Kurt), the
maximum drawdown (MDD), the relative turnover (TO) as defined in Eq. (16), and transaction costs in
return units assuming relative implementation costs of 30bps (TC) in Panel A, both for the joint tangency
portfolio and sub-portfolios invested in the corresponding bond, option, and stock components. Panel B
provides correlation coefficients for the tangency portfolio and the sub-portfolios. The sample period ranges
from August 2002 through August 2022.

Joint Bonds Options Stocks

Panel A: Returns

Return 1.75 0.13 1.38 0.24
Std 0.88 0.27 0.82 0.38
SR 6.88 1.60 5.83 2.22
Skew 0.86 3.47 1.30 −0.81
Kurt 2.69 19.95 4.22 1.21
MDD −1.44 −1.40 −1.22 −3.34
TO 1.03 0.40 2.38 1.12
TC 1.18 0.12 0.72 0.34

Panel B: Correlation

Bonds 0.25
Options 0.90 0.09
Stocks 0.19 −0.32 −0.14

bonds by Choi, Huh, and Shin (2021) who recommend a one-way cost of 17–19bps. Frazzini,

Israel, and Moskowitz (2018) show that AQR’s average implementation costs for trading

stocks varies between 5 and 25bps for large and small caps, respectively, with significant

variation over time. For options trading, Muravyev and Pearson (2020) suggest that institu-

tional investors are able to achieve much better execution than implied by bid-ask spreads.

We consider a relatively conservative level of transaction costs of 30bps – larger than the es-

timates proposed by Choi, Huh, and Shin (2021) and Frazzini, Israel, and Moskowitz (2018).

For simplicity, we use the same estimates for bonds, options, and stocks. The tangency

portfolio’s monthly turnover is relatively high at 103%, resulting in total transaction costs

of 1.18% per month. As a result, the net-of-fees SR reduces to 2.26.

We find that the net returns and SR of the sub-portfolios of bonds and stocks shrink

significantly with these high levels of transaction costs. Nevertheless, Panel B of Table 4

shows that there are important diversification benefits of investing jointly in bonds, stocks,
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Figure 4: Tangency Portfolio Weights by Asset Class

The figure shows the distribution of long and short portfolio weights placed in each asset class over time,
defined as wlong

AC,t =
∑

i∈AC wit1wit>0 and wshort
AC,t =

∑
i∈AC wit1wit<0, for AC ∈ [bonds, options, stocks]. The

sample period ranges from August 2002 through August 2022.

and options. We show the correlations between the tangency portfolio and the three sub-

portfolios. The returns of the tangency portfolio are modestly correlated with the bond

and stock sub-portfolios. The correlation with the option sub-portfolio is large at 90%,

showcasing the relative outperformance of the options market.

The correlations between the different class-level sub-portfolios are very low or even neg-

ative, highlighting that investors can earn significant diversification benefits when incorpo-

rating information about the joint dependence structure of the three asset classes. The

sub-portfolios of bonds and options are modestly correlated with a correlation of 0.09; sub-

portfolios of bonds and stocks have a correlation of −0.32, and sub-portfolios of options and

stocks have a correlation of −0.14.

We can also analyze the distribution of portfolio weights placed in each of the three asset
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classes. We separately consider long and short portfolio weights within each class AC, i.e.,

wlong
AC,t =

∑
i∈AC wit1wit>0 and wshort

AC,t =
∑

i∈AC wit1wit<0. Figure 4 shows that, on average,

the tangency portfolio favors a symmetric but small long and short investment in corporate

bonds. For options, we find a slight tilt towards shorting options, potentially to harness the

variance risk premium embedded in equity options (Goyal and Saretto, 2009). The asset

class weights in stocks are fairly symmetric. Overall, class-specific weights are relatively

stable over time.

6 The Integration of Bonds, Options, and Stocks

A central question is the degree to which the different markets for bonds, options, and stocks

are integrated. Table 2 already shows that the joint IPCA factor model simultaneously

explains the returns of bonds, options, and stocks well. In this section, we dig deeper into

common sources of return predictability.

6.1 Commonality in Predictability

Integrated Predictions. As a first step, we investigate if explanatory power of the factor

model is shared across asset classes. If markets are (partially) integrated, we expect to

observe shared patterns of predictability, with more predictable bond and option returns

whenever the firm’s stock return is easy to predict, for example. For each firm in our sample,

we compute the Total R2 using a joint K = 5 factor model separately for the firm’s bond,

option, and stock. To be able to compute a meaningful measure of variation, we require the

data for a firm to be available for at least 24 months.

Next, we sort firms into decile portfolios by their bonds’ Total R2 and record the average

bond, option, and stock R2 for each decile. We also show the R2 spread, as the difference

between the average R2 for the least predictable decile (1) and the most predictable decile
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Table 5: Sorts on Asset Class Predictability

The table shows commonality in asset class-level predictability, measured by the Total R2. As an example,
in Panel A, we sort firms into deciles by their bond-level predictability and record the average R2 of a
K = 5 factor joint IPCA model. We then also record the average R2 for the remaining two asset classes.
We consider firms with at least 24 months of return data available. We repeat the procedure by sorting on
option R2 in Panel B and stock R2 in Panel C.

1 2 3 4 5 6 7 8 9 10 10-1

Panel A: Portfolios Sorted by Bonds’ Total R2

Bonds −0.34 0.17 0.25 0.32 0.39 0.44 0.50 0.56 0.62 0.72 1.06
Options 0.18 0.22 0.23 0.20 0.25 0.26 0.28 0.28 0.31 0.34 0.16
Stocks 0.23 0.24 0.26 0.25 0.29 0.29 0.32 0.30 0.29 0.30 0.07

Panel B: Portfolios Sorted by Options’ Total R2

Bonds 0.30 0.31 0.37 0.33 0.38 0.41 0.38 0.42 0.42 0.48 0.18
Options −0.07 0.03 0.08 0.12 0.16 0.20 0.25 0.30 0.37 0.50 0.57
Stocks 0.16 0.18 0.20 0.20 0.22 0.24 0.26 0.27 0.30 0.33 0.17

Panel B: Portfolios Sorted by Stocks’ Total R2

Bonds 0.33 −0.12 0.37 0.32 0.36 0.37 0.39 0.39 0.42 0.43 0.11
Options 0.12 0.13 0.15 0.14 0.16 0.18 0.19 0.21 0.23 0.32 0.20
Stocks −0.03 0.07 0.11 0.14 0.18 0.22 0.26 0.31 0.37 0.47 0.51

(10). Panel A of Table 5 shows the results for this sort. We find that the explanatory power

of the joint IPCA model is negative at −34% for decile 1 bonds but increases significantly

to 72% for decile 10 bonds. By construction, the 10−1 predictability is high at 106%. More

interesting for our purposes, we also find a positive 10−1 spread in Total R2 for the two

other asset classes. For example, options of firms in decile 1 have an average R2 of 18%,

compared to an average R2 of 34% for options of firms in decile 10. For stocks, the 10−1

spread is somewhat smaller at 7%. This result shows that sorting on how well joint IPCA

explains bond returns also produces a meaningful explanatory spread for options and stocks.

We repeat this exercise by sorting on options explanatory power and show the results in

Panel B of Table 5. The 10−1 explanatory spread for options is 57% and ranges between

−0.07% and 50% from the bottom to the top decile. We find a strong commonality in the

explanatory pattern between options, stocks and bonds: sorting on option Total R2 produces

a bond spread of 18% and a stock spread of 17%. Finally, Panel C of Table 5 sorts on stock
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Figure 5: Commonality in the Predictability of Characteristic-Managed Portfolios

The figure shows the Total R2 for a K = 5 factor joint IPCA model for the 163× 3 CMPs of bonds, options,
and stocks. The left plot is a scatter of the resulting R2s for CMPs of bonds compared to CMPs of stocks.
The middle (right) plot repeats this exercise for CMPs of bonds (stocks) on the x-axis and options on the
y-axis.

Total R2. We find that the 10−1 spread for stock is 51%, for options is 20%, and for bonds is

11%, suggesting that stocks and options tend to be more integrated than stocks and bonds.

As another manifestation of commonality across the three asset classes, we calculate the

Total R2 of the 163 CMPs for each asset class and show bivariate scatter plots of these R2s

of CMPs of one asset class versus that of CMPs of another asset class in Figure 5. A strong

correlation is evident in these plots showing that the explanatory power is shared across

CMPs of bonds, options, and stocks. For example, regressing the R2s of CMPs of stocks on

the R2s of CMPs of bonds gives a slope coefficient (β) of 0.81 (left panel). This regression

explains 54% of the variation in explanatory R2s. We also find a large agreement in the

explanatory power of CMP returns for CMPs of bonds vs. options in the middle and stocks

vs. options in the right panel of Figure 5.

Factor Importance. Our K = 5 joint IPCA factors jointly explain the returns of bonds,

options, and stocks. But, are all five factors required for each asset class? For instance, if

factors F1-F2 are important for bonds, F3-F4 for options, and F5 for stocks, then this would
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Table 6: Factor Influence on Explaining Bond, Option, and Stock Returns

The table shows the relative reduction in Total R2 when “turning off” the influence of the kth factor. We do
so by setting each of that factor’s realizations to zero. The left panel shows the impact of turning off factors
one-by-one, the right panel shows the cumulative effect. Factors are ordered with the first factor having the
largest average return.

K Factor Influence Cumulative Factor Influence

↓ Bonds Options Stocks Total Bonds Options Stocks Total

1 −0.27 −0.30 −0.22 −0.25 −0.27 −0.30 −0.22 −0.25
2 −0.58 −0.21 −0.53 −0.48 −0.86 −0.51 −0.75 −0.72
3 −0.01 −0.27 −0.08 −0.11 −0.87 −0.79 −0.83 −0.83
4 −0.03 −0.11 −0.12 −0.10 −0.90 −0.91 −0.96 −0.94
5 −0.12 −0.09 −0.04 −0.06 −1.00 −1.00 −1.00 −1.00

imply weak integration across the three asset classes (even if the three asset classes share the

same set of characteristics to model time-varying betas). The evidence so far in this section,

showing commonality in the explanatory power across the three asset classes, suggests that

this is an unlikely possibility. Nevertheless, we formally investigate the commonality picked

up by the five factors.

To do so, we iteratively “turn off” the influence of a factor by setting its realizations

to zero. We then document the resulting drop in Total R2 across asset classes, as well as

individually for the subsample of bonds, options, and stocks. We start with the factor with

the highest mean return (factor F1) and work our way down to the factor with the smallest

mean return (factor F5). We provide the results on the relative reduction in Total R2 in

Table 6. The panel on the left shows the results when restricting the influence of one factor

at a time, the panel on the right shows the cumulative effect, i.e., the second row shows the

effect of simultaneously turning off factors F1 and F2.

Table 6 shows that turning off the influence of the first factor decreases the bond R2 by

27% (from 30% to 22%), the option R2 by 30%, and the stock R2 by 22%, for a reduction

in the overall R2 by 25%. This first factor seems to be equally important for the three asset

classes, seemingly capturing market effects across bonds, stocks, and options. Factor F2 is

most important for bonds and stocks. Turning it off reduces the bond R2 by 58% and the
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stock R2 by 53%. The third factor is most important for options, and is responsible for

27% of joint IPCA’s explanatory power over option returns. Excluding it also reduces the

stock R2 by 8%. F4 is also important for explaining stock and option returns. Excluding

it reduces the R2 by 11% and 12% for options and stocks, respectively. The fifth factor is

mostly informative about bond and option returns.

The most important factors for explaining option returns are F1, F2 and F3, which to-

gether make up 79 percent of the model’s option return predictability. Consistent with the

commonality patterns shown in Table 5, the three factors are also responsible for 87 percent

of the model’s bond return predictability as well as for 83 percent of the model’s stock return

predictability, and thus for 83 percent of the model’s total explanatory power. The three

most important factors for stock return predictability are factors F1, F2, and F4. They

capture 87 percent of the model’s explanatory power for stocks, 62 percent for options, and

88 percent for bonds. These results again indicate a large degree of integration between

the three markets. The last column “Total” shows that all five factors are important for

explaining firm returns, with the “market factor” F1, the “bond-stock factor” F2 and the

two “option-stock factors” F3 and F4 being most important.

Characteristics Importance. The specification in Eq. (3) has two main ingredients:

latent factor realizations Ft+1 and the Γβ matrix, which maps observable characteristics to

heterogeneity in factor sensitivities (betas). Combining the information from Γβ and the

factors, we can understand the relative importance of each input characteristic in describing

expected returns. For this, we introduce an importance and a sensitivity measure, which

extend the characteristic importance proposed by Kelly, Pruitt, and Su (2019). The lth

row of Γβ, γl, describes how characteristic l influences an asset’s sensitivity to each of the

K factors. Combined with the average return of the K factors this informs us about a
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characteristic’s Importance defined as:

Importance(zl) = |γl|′ F . (17)

Importance measures the average absolute influence of the lth characteristic on an asset’s β,

weighted by each factor’s average influence on expected returns. Similarly, we can assess the

Sensitivity of the model’s expected returns to a unit change in characteristic l:

Sensitivity(zl) = γ′
lF . (18)

As characteristics are rank-standardized between −0.5 and 0.5, Sensitivity gives us the

model-expected return spread of two stocks with a unit difference in l and with otherwise

equal characteristics.

In Panel A of Table 7, we provide the ranks of Importance and the values for Sensitivity for

the 12 most important characteristics for explaining bond returns.9 Among the 12 most im-

portant characteristics for explaining bond returns are three bond characteristics (one being

the constant), one option characteristic, and eight stock characteristics. The most important

characteristic for bond returns is its rating (B rating), followed by the bond market (const),

the stock’s short-term reversal (S ret 1 0), and the bond’s duration (B DURATION). For

example, a higher short-term reversal in the stock is associated with larger expected bond

returns of 0.45% over the next month.

It is interesting to note that while the bond’s short-term reversal is the sole bond char-

acteristic in the list of top-12 CMPs of bonds in Section 4.2, information about the bond’s

rating (B rating), duration (B duration) and the overall bond market return (const) are im-

portant for modeling expected bond returns. The three characteristics generate an average

9Table 1 shows the most important characteristics that have the highest SRs for CMPs. However, a
characteristic that generates high SR need not necessarily be the one that is important for describing the
risk-return tradeoff in a joint IPCA model.
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Table 7: Importance of Characteristics

The table shows Importance ranks (Eq. (17)) and Sensitivity values (Eq. (18)) for the top-12 most important
characteristics, measured by their Importance, for bonds (Panel A), options (B), and stocks (C).

Bonds Options Stocks

Imp. Sens. Imp. Sens. Imp. Sens.

Panel A: Top Characteristics for Bonds

B rating 1 0.29 57 0.11 57 −0.06
const 2 0.22 12 −0.10 1 0.12
S ret 1 0 3 0.45 43 −0.15 23 −0.09
B duration 4 0.00 106 −0.04 87 0.02
S cop at 5 0.44 62 0.09 44 −0.03
S at turnover 6 −0.09 55 0.07 60 0.06
S at me 7 0.04 21 0.29 22 0.05
S dolvol 126d 8 0.09 24 −0.20 4 0.07
O S toi 9 −0.23 17 0.34 50 −0.07
S oaccruals at 10 0.06 45 0.14 63 −0.05
S rvol 21d 11 0.22 18 0.29 21 −0.05
B mom6 1 12 −0.12 95 −0.05 94 0.04

Panel B: Top Characteristics for Options

O C embedlev 23 0.01 1 1.04 40 −0.08
O C theta 82 −0.01 2 0.73 67 0.01
O S rnv 30 41 −0.11 3 0.67 37 −0.09
O S rns 30 19 0.08 4 −0.62 71 0.02
S ivol capm 252d 156 −0.01 5 0.57 9 0.11
O S rns 182 13 0.03 6 −0.58 35 −0.09
O S ivarud 30 33 −0.15 7 0.54 34 −0.09
S market equity 26 −0.02 8 −0.44 15 0.02
O C delta 80 0.01 9 0.33 77 −0.05
O S demand pressure 56 0.08 10 −0.39 81 −0.02
O S ivud 30 105 0.02 11 0.36 95 0.04
const 2 0.22 12 −0.10 1 0.12

Panel C: Top Characteristics for Stocks

const 2 0.22 12 −0.10 1 0.12
S zero trades 126d 39 0.13 16 −0.35 2 0.34
O S demand roll252D 17 0.04 56 −0.02 3 0.26
S dolvol 126d 8 0.09 24 −0.20 4 0.07
S corr 1260d 97 −0.06 27 0.19 5 0.03
S beta 60m 44 0.05 77 0.07 6 0.08
S cop atl1 57 −0.09 82 0.05 7 0.13
S mispricing mgmt 53 −0.01 60 0.10 8 −0.20
S ivol capm 252d 156 −0.01 5 0.57 9 0.11
S prc 100 −0.05 85 0.07 10 −0.11
S rmax5 21d 28 −0.11 14 0.35 11 −0.18
S zero trades 21d 20 0.03 19 0.32 12 −0.19

return spread of 0.29%, 0.00%, and 0.22%, respectively. Interestingly, while a bond’s dura-

tion has an average return of zero, it is highly important for joint IPCA to describe variation
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in bond returns. We also report the Importance rank and Sensitivity for the other two asset

classes in Panel A of Table 7. Of the 12 most important characteristics for explaining bond

returns, the highest importance rank for explaining option returns is the constant on rank 12.

The median rank among options is 44. The stock’s assets-to-market ratio (S at me), dollar

trading volume (S dolvol 126d), and realized volatility (S rvol 21d) are also among the 30

most important characteristics for explaining option returns. Stock trading volume is the

fourth most important determinant of expected stock returns, the stock’s assets-to-market

ratio and realized volatility are ranked 22nd and 21st, respectively, for modeling expected

stock returns.

In Panel B of Table 7, we show the most influential characteristics for explaining option

returns. Most important are the option’s embedded leverage and theta. Both characteristics

are not only vital for explaining variation in options’ sensitivity to the common risk factors,

but their implied return spreads are also large at 1.04% and 0.73%. Risk-neutral moments

(O S rnv 30, O S rns 30, O S rns 182), the stock’s idiosyncratic volatility (S ivol) and mar-

ket capitalization (S market equity), as well as the relative trading in the options vs. the

stock market are also important determinants of expected option returns. Five (three) out

of the top-12 characteristics for explaining option returns also show up among the 30 most

important characteristics for modeling expected bond (stock) returns.

The most important characteristics for explaining stock returns are almost exclusively

derived from the stock itself (Panel C of Table 7). Only the past option volume relative to the

stock’s market capitalization (O S demand roll252D) enters the top-12 as an option-based

characteristic. Other important characteristics are the stock’s liquidity (S zero trades 126d),

dollar trading volume (S dolvol 126d), beta (S beta 60m), mispricing (S mispricing mgmt)

and MAX returns (S rmax5 21d, see Bali, Cakici, and Whitelaw, 2011). Five (seven) of the

top-12 characteristics for explaining stock returns are also among the top-30 characteristics

for bonds (options).

37



Overall, the overlap in characteristics explaining returns of all three asset classes shows

that the joint factor structure that we extract provides a parsimonious factor model with the

ability to simultaneously explain the returns of the three asset classes. Information about

returns and characteristics from the two other asset classes is beneficial to understand the

risk-return trade-off of the third asset class.

6.2 Joint vs. Single IPCA

The joint factor structure that we extract with joint IPCA is beneficial to explain returns of

bonds, options, and stocks, while maintaining a parsimonious model with a low number of

latent factors. We now highlight that joint IPCA is better able to explain average returns

than individual IPCA models estimated for a single asset class and compare K = 5 factor

models.

Unconditional Alphas. We compare our joint IPCA versus three individual IPCAmodels

estimated for each asset class in their explanatory power for 163 × 3 CMPs described in

Section 4.2. We calculate and compare unconditional alphas as this provides a common

testing ground for how well the latent factors are able to explain returns of each of the three

asset classes. The results are presented in Table 8.

37 CMPs of bonds, 142 of options, and 40 CMPs of stocks have significant average returns

for a total of 219 CMPs with significant full-sample returns, or a little under half of the

163×3 CMPs that we analyze. We use Newey and West (1987) standard errors with 12 lags

to account for serial correlation and heteroskedasticity in returns.

Joint IPCA does an impressive job of explaining average returns across asset classes: it

leaves only 11 alphas unexplained: 1 for bonds, 7 for options, and 3 for stocks. Looking at

single IPCA models estimated on individual asset classes, we find that the five bond-based

factors fail to explain 23 CMPs of bonds, 139 CMPs of options, and 31 CMPs of stocks, for

38



Table 8: Unconditional Alphas of Joint and Single IPCA Models

The table shows how many of the 163× 3 CMPs defined in Section 4.2 have significant average returns per
asset class, and how many unconditional alphas remain significant after adjusting for risk either using the
joint IPCA model, or individual IPCA models estimated for a single asset class. We also consider a combined
model with two factors estimated from each asset class (2+2+2). We use Newey and West (1987) standard
errors with 12 lags.

Unconditional alphas

Average Joint Single IPCA

returns IPCA 5 Bond 5 Option 5 Stock 2 + 2 + 2

Bonds 37 1 23 6 17 10
Options 142 7 139 20 129 14
Stocks 40 3 31 8 27 7

Σ 219 11 193 34 173 31

a total of 193 CMPs with significant alphas. The option-level IPCA performs significantly

better: it leaves 6, 20, and 8 CMP alphas of bonds, options, and stocks, respectively, as

statistically significant. The model estimated exclusively on stock returns performs slightly

better than its bond counterpart: the single IPCA with five stock-level factors fails to explain

17, 129, and 27 CMPs of bonds, options, and stocks, respectively, or a total of 173 CMPs.

Impressively, our joint IPCA model manages to explain more CMP returns of the same

asset class than the single IPCA models were estimated on, highlighting the importance

of incorporating the integration structure between the three asset classes. Finally, we also

consider a model that extracts two factors per asset class. This model performs better than

the individual IPCA models but still leaves a total of 31 CMP returns unexplained.

Sharpe Ratios. Next, we analyze how well each of the models describes the mean-variance

frontier. Table 9 shows that the tangency portfolio of the joint IPCA has an annualized SR

of 6.88, compared to 1.37 for the bond-based, 5.90 for the option-based, and 2.30 for the

stock-based IPCA model. The combined model with two factors estimated from each of the

asset classes has a tangency portfolio with a SR of 5.99. Interestingly, the Sharpe ratios of the

class-level sub-portfolios of joint IPCA are comparable, or in the case of bonds even exceed

the Sharpe ratios of the tangency portfolios of the individual IPCA models (see Table 4).
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Table 9: Comparison of Sharpe Ratios for Joint vs. Single IPCA Models

The table compares the SRs of the tangency portfolios for the joint IPCA model as well as individual IPCA
models estimated for a single asset class. We assess the statistical significance of joint IPCA’s outperformance,
by regressing the returns of its tangency portfolio on a constant and each of the single IPCA tangency portfolio
returns, after fixing each portfolio’s full-sample standard deviation to 10% per year. The resulting t-statistics
in parenthesis are computed with Newey and West (1987) standard errors with 12 lags. We also consider a
combined model with two factors estimated from each asset class (2 + 2 + 2).

Joint Single IPCA

IPCA 5 Bond 5 Option 5 Stock 2 + 2 + 2

Sharpe Ratio 6.88 1.37 5.90 2.30 5.99
Outperformance 4.59 0.82 3.81 0.74

(12.92) (6.76) (8.00) (6.06)

The second row of Table 9 shows that the joint IPCA’s tangency portfolio significantly

outperforms its competitors. For this, we fix the full-sample standard deviation of the returns

of each tangency portfolio to 10% per year, and regress the difference between joint IPCA’s

tangency portfolio returns and the tangency portfolio returns of the single IPCA models

on a constant. The outperformance is measured by the alpha estimates and corresponding

t-statistics that are computed with Newey and West (1987) standard errors with twelve lags.

In all cases we find a highly significant SR outperformance of the joint tangency portfolio,

ranging between 0.74% and 4.59%.

Latent Factor Correlation. As a final comparison between joint and single IPCA models,

we compute the correlations between the five joint factors and each of the five single factors.

This allows us to understand common patterns in joint and single factors. Differences in the

included information may inform us about the reason for joint IPCA’s outperformance.

Consistent with the analysis of the influence of each factor in Table 6, we find in Table 10

that “market factor” F1 is highly correlated with one or more single bond, option and stock

factors. Likewise, F2, which is responsible for a large part of joint IPCA’s ability to explain

bond and stock return variation, is highly correlated to bond factor B3 and stock factors

S4 and S5. Joint factor F3 is highly correlated with option factor O5 and stock factors

S2 and S4, while joint factor F4 is highly correlated with option factors O2 and O3, stock
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Table 10: Correlation of Joint and Single Latent Factors

The table shows the Pearson correlation coefficient between the five joint IPCA factors (F1 to F5) and each
of the five latent factors obtained from individual IPCA models estimated on a single asset class. The largest
absolute correlation coefficient per row is highlighted in boldface.

F1 F2 F3 F4 F5

Panel A: Latent Bond Factors

B1 0.41 −0.31 −0.14 −0.10 0.03
B2 0.58 −0.53 −0.10 −0.15 −0.12
B3 −0.36 0.59 0.06 −0.35 −0.03
B4 0.07 −0.04 0.18 −0.44 -0.62
B5 0.13 −0.35 0.24 0.08 -0.37

Panel B: Latent Option Factors

O1 0.46 0.07 0.02 0.03 0.00
O2 0.08 0.07 −0.31 -0.44 0.02
O3 −0.04 0.03 0.13 0.29 0.02
O4 0.03 -0.10 0.07 0.01 −0.04
O5 0.39 -0.62 0.53 0.18 −0.38

Panel C: Latent Stock Factors

S1 −0.08 0.15 −0.03 −0.06 −0.07
S2 0.11 −0.19 0.42 −0.02 −0.24
S3 0.03 −0.14 −0.10 0.36 0.02
S4 0.38 -0.56 0.37 −0.36 0.17
S5 −0.60 0.62 0.17 0.15 −0.14

factor S3, and bond factors B3 and B4. Finally, joint factor F5 is most correlated with bond

factors B4 and B5, but is also related to option factor O5. In summary, the joint factors

capture information across latent factors estimated from single asset classes, and combine

this information to explain returns of bonds, stocks, and options, in a parsimonious factor

structure.

7 Interpreting Latent Factors

7.1 Macroeconomic Sensitivity

It is instructive to understand how the joint latent factors, capable of pricing bonds, options

and stocks simultaneously, relate to observable macroeconomic indicators. We, therefore,
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regress each of the K = 5 latent factors on several established macroeconomic variables in

Table 11. We include innovations in the Chicago Fed National Activity Index (CFNAI),

which is a leading indicator of U.S. economic activity extracted from a broad range of

individual macroeconomic variables, innovations in the macroeconomic uncertainty measure

(UNC) of Jurado, Ludvigson, and Ng (2015), and in the intermediary capital ratio (ICR) of

He, Kelly, and Manela (2017).

We find that our first IPCA factor (the “market factor”) is positively exposed to the

intermediary capital ratio. A one standard deviation increase in ICR increases its returns

by 89bps. Factor F2 is positively related to innovations in UNC and negatively to innova-

tions in ICR. This is consistent with predictions of the intertemporal capital asset pricing

model (ICAPM) (Merton, 1973), in that low (high) levels of UNC (ICR) signal better in-

vestment opportunities in the future. The latent factors are constructed to have a positive

full-sample mean, suggesting that exposure to the second latent factor exposes the investor

to considerable macroeconomic risks (Maio and Santa-Clara, 2012).

Table 11: Regressing Latent Factors on Macroeconomic Indicators

The table shows the results of regressing each of the K = 5 latent factors on innovations of the Chicago Fed
National Activity Index (CFNAI), the macroeconomic uncertainty index (UNC) of Jurado, Ludvigson, and
Ng (2015), and the intermediary capital ratio (ICR) of He, Kelly, and Manela (2017). The three macroe-
conomic indicators are normalized by their full-sample standard deviation. *** (**, *) denote statistical
significance at the 1% (5%, 10%) level. We use Newey and West (1987) standard errors with twelve lags.

F1 F2 F3 F4 F5

const. 2.69*** 0.88*** 0.16 0.11 0.03
CFNAI 0.03 −0.01 −0.03 0.10 −0.03
UNC −0.07 0.29*** −0.25** −0.28** 0.43***
ICR 0.89*** −1.91*** 0.18 −0.38** 0.21

Adj.R2 0.23 0.53 0.06 0.04 0.09

The third factor is negatively exposed to UNC, suggesting suggesting that it is a hedge

against macroeconomic uncertainty. F4 is negatively exposed to innovations in UNC and

ICR, therefore capturing the spread between overall macroeconomic uncertainty and risks

of the intermediary sector. Finally, factor F5 is positively related to UNC, yielding larger

returns in times of elevated macroeconomic uncertainty.
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7.2 Joint IPCA and Benchmark Factor Models

We have thus far shown that the joint IPCA model outperforms IPCA models estimated

for single asset classes. We now compare the joint model with the performance of various

benchmark factor models, which have been proposed in the literature for either of the three

asset classes. To the best of our knowledge, joint IPCA is the first attempt at finding a joint

factor model, capable of pricing bonds, options, and stocks simultaneously. We include the

Fama and French (2015) five-factor model augmented with momentum (Carhart, 1997) as

the leading factor model for the stock market (FF6) and the bond market CAPM for bonds

(MKTB). There is still no consensus about the “best” factor model for options, such that we

resort to the two straddle-based factors proposed by Coval and Shumway (2001) (CS). We

also consider a combination of the three factor models, which in total includes nine factors

(6 + 1 + 2).

Table 12: Unconditional Alphas of Joint IPCA vs. Benchmark Factor Models

The table shows how many of the 3 × 163 characteristic-managed portfolios defined in Section 4.2 have
significant average returns per asset class, and how many unconditional alphas remain significant after
adjusting for risk either using the joint IPCA model, or benchmark factor models. We consider the Fama
and French (2015) five-factor model augmented with momentum (Carhart, 1997) (FF6), bond market CAPM
(MKTB), and the two straddle-based factors inspired by Coval and Shumway (2001) (CS). We also consider
a combination of the three factor models (Comb.), which in total includes nine factors (6 + 1 + 2). We use
Newey and West (1987) standard errors with twelve lags.

Unconditional alphas

Average Joint Benchmark Factors

returns IPCA MKTB CS FF6 Comb.

Bonds 37 1 32 21 33 21
Options 142 7 138 125 142 128
Stocks 40 3 36 25 35 33

Σ 219 11 206 171 210 182

We repeat the unconditional alpha analysis of Table 8 for the comparison between the joint

IPCA model and the three benchmark factor models in Table 12. We have already shown

that the joint IPCA leaves a statistically significant alpha in only 11 out of 219 CMPs. The

performance of the benchmark factor models are much worse. The CS option model fares
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best but still leaves 171 CMP returns unexplained, 21 for bonds, 125 for options, and 25

for stocks. The bond CAPM performs even worse: it fails to explain the returns of 206

out of 219 CMPs. The FF6 stock model fails to explain the returns of 210 CMPs. Even a

combination of the nine factors into a single model fails to explain the returns of 182 CMPs,

of which 21 are of bonds, 128 of options, and 33 of stocks.

Table 13: Regressing Latent Factors on Benchmark Factors

The table shows the results of regressing each of the K = 5 latent factors on a number of benchmark factors.
We consider the Fama and French (2015) five-factor model augmented with momentum (Carhart, 1997)
(FF6), bond market CAPM (MKTB), and the two straddle-based factors inspired by Coval and Shumway
(2001) (CS). The benchmark factors are normalized by their full-sample standard deviation. *** (**, *)
denote statistical significance at the 1% (5%, 10%) level. We use Newey and West (1987) standard errors
with twelve lags.

F1 F2 F3 F4 F5

const. 2.36*** 1.21*** −0.00 −0.03 0.05
STRADDLE INDEX 0.03 −0.09 0.14 0.19 0.09
STRADDLE STOCK 0.04 0.03 −0.62*** −0.52*** 0.06
MKT-RF 0.23** −0.92*** 0.60*** −0.58*** 0.99***
SMB 0.30*** −0.32*** 0.23*** −0.46*** 0.43***
HML −0.10 −0.17 0.04 0.36*** 0.10
RMW −0.03 0.10 −0.22*** 0.05 −0.20***
CMA −0.04 −0.14* −0.19*** 0.10 0.17**
MOM −0.25 0.10 0.41*** 0.47** −0.28***
MKTB 0.76*** −1.06*** −0.68*** 0.45** −1.56***

Adj.R2 0.58 0.80 0.44 0.24 0.67

In Table 13, we show results from regressing each of the K = 5 latent factors on the

nine benchmark factors from the three models described above. One of the advantages of

our joint IPCA specification is that it is able to extract information from the three asset

classes simultaneously. In contrast, factor models have typically been confined to extracting

information from a single asset class. Another advantage of the latent factor specification

is that it does not require prior knowledge about which characteristic-sorted factors drive

return differences in the cross-section. Instead, we extract a statistically optimal set of

factors. The results in Table 13 impressively highlight this advantage: we cannot find a

clear mapping between the five latent factors and the benchmark factors. The regressions’

adjusted R2s vary between 24% for F4 and 80% for F2. F1 seems to capture market-level
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effects, particularly among stocks and bonds, with a significantly positive coefficient for both

the stock market MKT-RF and bond market MKTB. This echoes the results of Table 6 that

F1 is important for explaining variation in bond, option, and stock returns jointly. F2 also

seems to capture variation in the stock and bond market, which is also consistent with the

factor exlusion exercise in Table 6. Factors F3 and F4 are related to the straddle factor

from individual stocks, and most stock-level factors. Finally, F5 is most exposed to the

bond-market. These results showcase that the latent factor structure extracts information

beyond of what is captured in established benchmark models.

7.3 Replacing Factors

As a final analysis towards interpreting the K = 5 latent factors of our joint IPCA specifi-

cation, we perform a factor-replacement exercise. For this, we first calculate the drop in the

Total R2 when setting all realizations of each factor separately to zero. We have discussed

the implications of this exercise in Table 6. Denote the resulting Total R2 as R2
zero. Then,

we regress each of the kth latent factor on a constant and either the three macroeconomic

indicators CFNAI, UNC and ICR, or the nine benchmark factors discussed above, subsumed

in matrix X:

Ft,k = αk + βkXt + εt,k (19)

We replace the realizations of the kth factor with the fitted values from this regression:

F̂t,k = αk + βkXt, (20)

and record the resulting Total R2 when replacing factor kth’s realizations with either macroe-

conomic information or information from the nine benchmark factors. Denote the resulting

Total R2 as R2
X . Finally, in Figure 6, we show the reduction in the model’s Total R2 relative
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to setting the realizations of the kth factor to zero:

Relative Reduction =
R2

X −R2

R2
zero −R2

. (21)

A value of 1 indicates that replacing the factor’s realizations with its projections on macroe-

conomic information/benchmark factors produces a Total R2 as low as that achieved by

simply setting its realizations to zero. A value of 0 instead indicates that replacing the

factor’s realizations works well and produces no loss in explanatory power. This exercise al-

lows us to quantify the relative importance of the information embedded in macroeconomic

indicators and benchmark factors for the five latent and shared factors.
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Figure 6: Replacing Latent Factors with Macroeconomic Indicators or Benchmark Factors

The figure shows the relative reduction in the Total R2 (Eq. (21)) when replacing latent factor realizations
with fitted values from regressing it on macroeconomic indicators or benchmark factors extracted from bonds,
options, and stocks.

Figure 6 shows that replacing the latent factors with their fitted values always reduces

the model’s ability to explain returns of bonds, options, and stocks (all Relative Reduction

values are greater than zero). This again highlights that the joint IPCA factors optimally

describe the risk-return trade-off across the three asset classes and pick up on important

variation unexplained by macroeconomic information and information extracted from the

asset classes individually. The figure also shows that the first and second factor, which
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explains most variation of bond, option, and stock returns, can be replicated reasonably well

by macroeconomic information and by benchmark factors, with Relative Reduction values

between 0.25 and 0.40. This is despite the fact that benchmark factors explain a larger

fraction of the factors’ return variation (58% and 80% in Table 13 versus 23% and 53% in

Table 11), and highlights the importance of the factor replacement exercise to interpret the

latent factors. The three remaining factors are only poorly replicated using macroeconomic

information or benchmark factors, with Relative Reduction values far exceeding 50%. The

latent factors convey information about return variation across bonds, stocks, and options

not picked up by the benchmark factors nor the macroeconomic indicators.

8 Conclusion

We propose a factor model to jointly describe the risk-return tradeoff for bonds, options, and

stocks. Just five shared factors are able to explain between 12% and 30% of the return vari-

ation of bonds, options, and stocks, and describe the conditional and unconditional pricing

of each asset class well. The resulting tangency portfolio exploits important diversification

benefits enjoyed when simultaneously modeling the risk-return tradeoff for the three asset

classes, and achieves an in-sample (out-of-sample) Sharpe ratio of 6.9 (6.4).

The parsimonious factor structure of joint IPCA better explains average returns across

asset classes. Of 219 CMPs that have a significant average return over our sample period

between August of 2002 and August of 2022, our five-factor joint IPCA model leaves only

eleven unexplained. In contrast, a five-factor bond-only IPCA model leaves 193 unexplained.

Option- and stock-only IPCA models leave 34 and 173 unexplained, respectively, and even a

model, which combines latent factors extracted individually from the three asset classes fails

to explain the returns of 31 CMPs. We also compare joint IPCA with prominent benchmark

factor models put forth in the literature for the three asset classes. Combining the bond

market factor, two option, and six stock factors fails to explain the return patterns of 182
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CMPs, lagging far behind the explanatory power of joint IPCA.

We investigate patterns of commonality and find a high degree of integration among bonds,

options, and stocks. Interestingly, we also find a high degree of integration between bonds

and options, lending empirical credence to the idea of Merton (1974) structural credit risk

model that bonds (and stocks) are options on a firm’s assets and thus share many of the

properties of equity options. While most research has thus far focused on the integration of

bond and stock markets (see Du, Elkamhi, and Ericsson, 2019, as an example), our results

call for the additional consideration of options and how the trading activity in equity options

relates not only to the underlying stock but also to corporate bonds of the same firm. Doshi,

Ericsson, Fournier, and Seo (2022) is a first step in this direction at the index level.
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A Firm Characteristics

The following table shows the whole set of 264 firm-level characteristics extracted from the

firm’s bonds, options, and stock. Alongside the characteristic’s name, we provide a short

description, its original source in the literature, whether it was extracted from information

of the firm’s bond, option, or stock. We also provide the reason for dropping the character-

istic in the estimation of joint IPCA in Eq. (3). For bond-level characteristics, a name in

capital letters indicates that we adjust for microstructure noise in bond transaction prices

(Dickerson, Mueller, and Robotti, 2023).
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Characteristic Instrument Description Source Dropped?

B BONDPRC Bonds Price Dickerson, Robotti, Robotti (2023) insignificant
B BOND VALUE Bonds Value Dickerson, Robotti, Robotti (2023) correlation
B BOND YIELD Bonds Yield Dickerson, Robotti, Robotti (2023) correlation
B CONVEXITY Bonds Convexity Dickerson, Robotti, Robotti (2023) correlation
B CS Bonds Credit spread Dickerson, Robotti, Robotti (2023) insignificant
B DURATION Bonds Duration Dickerson, Robotti, Robotti (2023)
B ILLIQ Bonds Illiquidity Dickerson, Robotti, Robotti (2023) insignificant
B STREV Bonds Short-term reversal Dickerson, Robotti, Robotti (2023)
B beta CFNAI Bonds Beta to Chicago Fed National Activity Index (controls for bond market) insignificant
B beta ICR Bonds Beta to Intermediary Capital Ratio of He, Kelly, Manela (controls for bond market) insignificant
B beta MKTB Bonds Beta to value-weighted bond market insignificant
B beta dfy Bonds Beta to default spread of Welch, Goyal (controls for bond market) insignificant
B beta tms Bonds Beta to term spread of Welch, Goyal (controls for bond market) insignificant
B beta unc Bonds Beta to macroeconomic uncertainty of Jurado, Ludvigson, Ng (controls for bond market) insignificant
B beta vix Bonds Beta to Cboe’s VIX (controls for bond market) insignificant
B bond age Bonds Bond’s age availability
B bond amount out Bonds Amount outstanding Dickerson, Robotti, Robotti (2023) insignificant
B es90 Bonds Expected shortfall (90th percentile) correlation
B es95 Bonds Expected shortfall (95th percentile) insignificant
B kurt12 Bonds Return kurtosis measured over past 12 months insignificant
B kurt24 Bonds Return kurtosis measured over past 24 months insignificant
B kurt36 Bonds Return kurtosis measured over past 36 months insignificant
B ltrev36 12 Bonds Long-term reversal (36-12) insignificant
B ltrev48 12 Bonds Long-term reversal (48-12) Dickerson, Robotti, Robotti (2023) insignificant
B mom12 1 Bonds 12-1 momentum insignificant
B mom3 1 Bonds 3-1 momentum insignificant
B mom6 1 Bonds 6-1 momentum Dickerson, Robotti, Robotti (2023)
B mom9 1 Bonds 9-1 momentum insignificant
B n trades month Bonds Number of trades in previous month Dickerson, Robotti, Robotti (2023) insignificant
B rating Bonds Rating Dickerson, Robotti, Robotti (2023)
B skew12 Bonds Return skewness measured over past 12 months insignificant
B skew24 Bonds Return skewness measured over past 24 months insignificant
B skew36 Bonds Return skewness measured over past 36 months insignificant
B std12 Bonds Return standard deviation measured over past 12 months insignificant
B std24 Bonds Return standard deviation measured over past 24 months insignificant
B std36 Bonds Return standard deviation measured over past 36 months insignificant
B var90 Bonds Value at risk (90th percentile) insignificant
B var95 Bonds Value at risk (95th percentile) insignificant
O B amihud roll252D bucket Amihud illiquidity measure for options in bucket, rolling over past 252 days Amihud (2002) correlation
O B hkurt roll252D bucket Historical kurtosis, rolling over past 252 days correlation
O B hskew roll252D bucket Historical skewness, rolling over past 252 days
O B hstd roll252D bucket Historical standard deviation, rolling over past 252 days
O B illiq roll252D bucket Autocorrelation of returns, measured over past 252 days Bao, Pan, and Wang (2011) correlation
O B ivrank roll252D bucket IV rank measured over past 252 days
O B mom roll252D bucket Momentum, rolling over past 252 days Heston, Jones, Khorram, Li, and Mo (2023)
O B oi share bucket Open interest share of options in bucket
O B pfht roll252D bucket Modified illiquidity measure based on zero returns, measured over past 252 days Fong, Holden, and Trzcinka (2017) correlation
O B pifht roll252D bucket Extended FHT measure based on zero returns, measured over past 252 days correlation
O B piroll roll252D bucket Extended Roll’s measure, measured over past 252 days Goyenko, Holden, and Trzcinka (2009)
O B pzeros roll252D bucket Zero return days, measured over past 252 days Lesmond, Ogden, and Trzcinka (1999) insignificant
O B roll roll252D bucket Roll’s measure, measured over past 252 days Roll (1974) insignificant
O B stdamihud roll252D bucket Standard deviation of Amihud illiquidity measure for options in bucket, rolling over past 252 days
O B vol share bucket Dollar volume share of options in bucket
O C delta contract OM’s delta
O C embedlev contract Embedded leverage Karakaya (2014)
O C gamma contract OM’s gamma multiplied by underlying close correlation
O C impl volatility contract IV correlation
O C mid contract Option’s mid price insignificant
O C open interest contract Open interest (dollar)
O C option age contract Option age in days insignificant
O C spread contract Option’s bid ask spread (relative)
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O C theta contract OM’s theta divided by underlying close
O C time value contract Option’s time value (mid - exercise value) insignificant
O C vega contract OM’s vega divided by underlying close insignificant
O S ailliq underlying Absolute illiquidity Cao and Wei (2010)
O S atm civpiv underlying Atm call minus put IV measured from IV surface
O S atm dcivpiv underlying Change in atm call minus put IV measured from IV surface An, Ang, Bali, and Cakici (2014)
O S civpiv underlying Near-the-money call minus put IV Bali and Hovakimian (2009)
O S dciv underlying Change in atm call IV An, Ang, Bali, and Cakici (2014)
O S demand pressure underlying Demand pressure Cao, Vasquez, Xiao, and Zhan (2019)
O S demand roll252D underlying Option volume measured over past 252 days vs. market capitalization
O S dos roll252D underlying Dollar option vs. dollar stock volume, measured over past 252 days
O S dpiv underlying Change in atm put IV An, Ang, Bali, and Cakici (2014)
O S fric underlying Contribution of market frictions to expected returns Hiraki and Skiadopoulos (2020)
O S ivarud 182 underlying Up vs. down IV ratio with 182-day expiration Huang and Li (2019) correlation
O S ivarud 30 underlying Up vs. down IV ratio with 30-day expiration Huang and Li (2019)
O S ivd underlying IV duration Schlag, Thimme, and Weber (2020)
O S ivrv roll252D underlying IV minus RV, realized measured over past 252 days Bali and Hovakimian (2009)
O S ivslope underlying IV slope Vasquez (2017) insignificant
O S ivud 182 underlying Up minus down IV with 182-day expiration
O S ivud 30 underlying Up minus down IV with 30-day expiration
O S ivvol roll252D underlying Volatility of IV, measured over past 252 days Baltussen, van Bekkum, and van der Grient (2018) insignificant
O S modos roll252D underlying Modified stock vs. option volume, measured over past 252 days Johnson and So (2012)
O S nopt underlying Number of options trading on the underlying
O S pba underlying Volume-weighted bid-ask spread Cao and Wei (2010)
O S pcratio roll252D underlying Put vs. call volume, measured over past 252 days Blau, Nguyen, and Whitby (2014)
O S pilliq underlying Relative illiquidity Cao and Wei (2010)
O S rnk 182 underlying Risk neutral kurtosis with 182-day expiration
O S rnk 30 underlying Risk neutral kurtosis with 30-day expiration
O S rns 182 underlying Risk neutral skewness with 182-day expiration Borochin, Chang, and Wu (2020)
O S rns 30 underlying Risk neutral skewness with 30-day expiration Borochin, Chang, and Wu (2020)
O S rnv 182 underlying Risk neutral volatility with 182-day expiration correlation
O S rnv 30 underlying Risk neutral volatility with 30-day expiration
O S shrtfee underlying Implied short-selling fee Muravyev, Pearson, and Pollet (2021)
O S skewiv underlying IV skew Xing, Zhang, and Zhoa (2010)
O S tlm 182 underlying Option-implied tail loss with 182-day expiration Vilkov and Xiao (2012) availability
O S tlm 30 underlying Option-implied tail loss with 30-day expiration Vilkov and Xiao (2012)
O S toi underlying Total open interest
O S tv underlying Total volume insignificant
O S vs change underlying Change in weighted put-call spread Cremers and Weinbaum (2010)
O S vs level underlying Weighted put-call spread Cremers and Weinbaum (2010)
S age Stock Firm age Jiang Lee and Zhang (2005)
S aliq at Stock Liquidity of book assets Ortiz-Molina and Phillips (2014)
S aliq mat Stock Liquidity of market assets Ortiz-Molina and Phillips (2014) insignificant
S ami 126d Stock Amihud Measure Amihud (2002) correlation
S at be Stock Book leverage Fama and French (1992)
S at gr1 Stock Asset Growth Cooper Gulen and Schill (2008)
S at me Stock Assets-to-market Fama and French (1992)
S at turnover Stock Capital turnover Haugen and Baker (1996)
S be gr1a Stock Change in common equity Richardson et al. (2005)
S be me Stock Book-to-market equity Rosenberg Reid and Lanstein (1985)
S beta 60m Stock Market Beta Fama and MacBeth (1973)
S beta dimson 21d Stock Dimson beta Dimson (1979) insignificant
S betabab 1260d Stock Frazzini-Pedersen market beta Frazzini and Pedersen (2014) insignificant
S betadown 252d Stock Downside beta Ang Chen and Xing (2006) insignificant
S bev mev Stock Book-to-market enterprise value Penman Richardson and Tuna (2007)
S bidaskhl 21d Stock The high-low bid-ask spread Corwin and Schultz (2012)
S capex abn Stock Abnormal corporate investment Titman Wei and Xie (2004)
S capx gr1 Stock CAPEX growth (1 year) Xie (2001)
S capx gr2 Stock CAPEX growth (2 years) Anderson and Garcia-Feijoo (2006)
S capx gr3 Stock CAPEX growth (3 years) Anderson and Garcia-Feijoo (2006)
S cash at Stock Cash-to-assets Palazzo (2012)
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S chcsho 12m Stock Net stock issues Pontiff and Woodgate (2008)
S coa gr1a Stock Change in current operating assets Richardson et al. (2005)
S col gr1a Stock Change in current operating liabilities Richardson et al. (2005) insignificant
S cop at Stock Cash-based operating profits-to-book assets
S cop atl1 Stock Cash-based operating profits-to-lagged book assets Ball et al. (2016)
S corr 1260d Stock Market correlation Assness, Frazzini, Gormsen, Pedersen (2020)
S coskew 21d Stock Coskewness Harvey and Siddique (2000)
S cowc gr1a Stock Change in current operating working capital Richardson et al. (2005) insignificant
S dbnetis at Stock Net debt issuance Bradshaw Richardson and Sloan (2006)
S debt gr3 Stock Growth in book debt (3 years) Lyandres Sun and Zhang (2008)
S debt me Stock Debt-to-market Bhandari (1988)
S dgp dsale Stock Change gross margin minus change sales Abarbanell and Bushee (1998)
S div12m me Stock Dividend yield Litzenberger and Ramaswamy (1979)
S dolvol 126d Stock Dollar trading volume Brennan Chordia and Subrahmanyam (1998)
S dolvol var 126d Stock Coefficient of variation for dollar trading volume Chordia Subrahmanyam and Anshuman (2001) correlation
S dsale dinv Stock Change sales minus change Inventory Abarbanell and Bushee (1998)
S dsale drec Stock Change sales minus change receivables Abarbanell and Bushee (1998)
S dsale dsga Stock Change sales minus change SG&A Abarbanell and Bushee (1998) insignificant
S earnings variability Stock Earnings variability Francis et al. (2004)
S ebit bev Stock Return on net operating assets Soliman (2008)
S ebit sale Stock Profit margin Soliman (2008)
S ebitda mev Stock Ebitda-to-market enterprise value Loughran and Wellman (2011)
S emp gr1 Stock Hiring rate Belo Lin and Bazdresch (2014)
S eq dur Stock Equity duration Dechow Sloan and Soliman (2004)
S eqnetis at Stock Net equity issuance Bradshaw Richardson and Sloan (2006)
S eqnpo 12m Stock Equity net payout Daniel and Titman (2006)
S eqnpo me Stock Net payout yield Boudoukh et al. (2007)
S eqpo me Stock Payout yield Boudoukh et al. (2007)
S f score Stock Pitroski F-score Piotroski (2000)
S fcf me Stock Free cash flow-to-price Lakonishok Shleifer and Vishny (1994)
S fnl gr1a Stock Change in financial liabilities Richardson et al. (2005)
S gp at Stock Gross profits-to-assets Novy-Marx (2013)
S gp atl1 Stock Gross profits-to-lagged assets correlation
S intrinsic value Stock Intrinsic value-to-market Frankel and Lee (1998)
S inv gr1 Stock Inventory growth Belo and Lin (2011)
S inv gr1a Stock Inventory change Thomas and Zhang (2002)
S iskew capm 21d Stock Idiosyncratic skewness from the CAPM
S iskew ff3 21d Stock Idiosyncratic skewness from the Fama-French 3-factor model Bali Engle and Murray (2016)
S iskew hxz4 21d Stock Idiosyncratic skewness from the q-factor model
S ivol capm 21d Stock Idiosyncratic volatility from the CAPM (21 days) correlation
S ivol capm 252d Stock Idiosyncratic volatility from the CAPM (252 days) Ali Hwang and Trombley (2003)
S ivol ff3 21d Stock Idiosyncratic volatility from the Fama-French 3-factor model Ang et al. (2006) correlation
S ivol hxz4 21d Stock Idiosyncratic volatility from the q-factor model
S kz index Stock Kaplan-Zingales index Lamont Polk and Saa-Requejo (2001) insignificant
S lnoa gr1a Stock Change in long-term net operating assets Fairfield Whisenant and Yohn (2003)
S lti gr1a Stock Change in long-term investments Richardson et al. (2005) insignificant
S market equity Stock Market Equity Banz (1981)
S mispricing mgmt Stock Mispricing factor: Management Stambaugh and Yuan (2016)
S mispricing perf Stock Mispricing factor: Performance Stambaugh and Yuan (2016)
S ncoa gr1a Stock Change in noncurrent operating assets Richardson et al. (2005)
S ncol gr1a Stock Change in noncurrent operating liabilities Richardson et al. (2005)
S netdebt me Stock Net debt-to-price Penman Richardson and Tuna (2007)
S netis at Stock Net total issuance Bradshaw Richardson and Sloan (2006)
S nfna gr1a Stock Change in net financial assets Richardson et al. (2005)
S ni ar1 Stock Earnings persistence Francis et al. (2004)
S ni be Stock Return on equity Haugen and Baker (1996)
S ni inc8q Stock Number of consecutive quarters with earnings increases Barth Elliott and Finn (1999)
S ni ivol Stock Earnings volatility Francis et al. (2004)
S ni me Stock Earnings-to-price Basu (1983)
S niq at Stock Quarterly return on assets Balakrishnan Bartov and Faurel (2010)
S niq at chg1 Stock Change in quarterly return on assets
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S niq be Stock Quarterly return on equity Hou Xue and Zhang (2015)
S niq be chg1 Stock Change in quarterly return on equity insignificant
S niq su Stock Standardized earnings surprise Foster Olsen and Shevlin (1984)
S nncoa gr1a Stock Change in net noncurrent operating assets Richardson et al. (2005)
S noa at Stock Net operating assets Hirshleifer et al. (2004)
S noa gr1a Stock Change in net operating assets Hirshleifer et al. (2004)
S o score Stock Ohlson O-score Dichev (1998)
S oaccruals at Stock Operating accruals Sloan (1996)
S oaccruals ni Stock Percent operating accruals Hafzalla Lundholm and Van Winkle (2011)
S ocf at Stock Operating cash flow to assets Bouchard, Krüger, Landier and Thesmar (2019)
S ocf at chg1 Stock Change in operating cash flow to assets Bouchard, Krüger, Landier and Thesmar (2019)
S ocf me Stock Operating cash flow-to-market Desai Rajgopal and Venkatachalam (2004)
S ocfq saleq std Stock Cash flow volatility Huang (2009)
S op at Stock Operating profits-to-book assets
S op atl1 Stock Operating profits-to-lagged book assets Ball et al. (2016) correlation
S ope be Stock Operating profits-to-book equity Fama and French (2015)
S ope bel1 Stock Operating profits-to-lagged book equity correlation
S opex at Stock Operating leverage Novy-Marx (2011) correlation
S pi nix Stock Taxable income-to-book income Lev and Nissim (2004)
S ppeinv gr1a Stock Change PPE and Inventory Lyandres Sun and Zhang (2008)
S prc Stock Price per share Miller and Scholes (1982)
S prc highprc 252d Stock Current price to high price over last year George and Hwang (2004)
S qmj Stock Quality minus Junk: Composite Assness, Frazzini and Pedersen (2018)
S qmj growth Stock Quality minus Junk: Growth Assness, Frazzini and Pedersen (2018) insignificant
S qmj prof Stock Quality minus Junk: Profitability Assness, Frazzini and Pedersen (2018)
S qmj safety Stock Quality minus Junk: Safety Assness, Frazzini and Pedersen (2018)
S rd5 at Stock R&D capital-to-book assets Li (2011) availability
S rd me Stock R&D-to-market Chan Lakonishok and Sougiannis (2001)
S rd sale Stock R&D-to-sales Chan Lakonishok and Sougiannis (2001)
S resff3 12 1 Stock Residual momentum t-12 to t-1 Blitz Huij and Martens (2011) insignificant
S resff3 6 1 Stock Residual momentum t-6 to t-1 Blitz Huij and Martens (2011)
S ret 12 1 Stock Price momentum t-12 to t-1 Fama and French (1996) insignificant
S ret 12 7 Stock Price momentum t-12 to t-7 Novy-Marx (2012) insignificant
S ret 1 0 Stock Short-term reversal Jegadeesh (1990)
S ret 3 1 Stock Price momentum t-3 to t-1 Jegedeesh and Titman (1993)
S ret 60 12 Stock Long-term reversal De Bondt and Thaler (1985)
S ret 6 1 Stock Price momentum t-6 to t-1 Jegadeesh and Titman (1993) insignificant
S ret 9 1 Stock Price momentum t-9 to t-1 Jegedeesh and Titman (1993) insignificant
S rmax1 21d Stock Maximum daily return Bali Cakici and Whitelaw (2011)
S rmax5 21d Stock Highest 5 days of return Bali, Brown, Murray and Tang (2017)
S rmax5 rvol 21d Stock Highest 5 days of return scaled by volatility Assness, Frazzini, Gormsen, Pedersen (2020)
S rskew 21d Stock Total skewness Bali Engle and Murray (2016)
S rvol 21d Stock Return volatility Ang et al. (2006)
S sale bev Stock Assets turnover Soliman (2008)
S sale emp gr1 Stock Labor force efficiency Abarbanell and Bushee (1998) insignificant
S sale gr1 Stock Sales Growth (1 year) Lakonishok Shleifer and Vishny (1994)
S sale gr3 Stock Sales Growth (3 years) Lakonishok Shleifer and Vishny (1994) insignificant
S sale me Stock Sales-to-market Barbee Mukherji and Raines (1996)
S saleq gr1 Stock Sales growth (1 quarter) insignificant
S saleq su Stock Standardized Revenue surprise Jegadeesh and Livnat (2006) insignificant
S seas 11 15an Stock Years 11-15 lagged returns, annual Heston and Sadka (2008) availability
S seas 11 15na Stock Years 11-15 lagged returns, nonannual Heston and Sadka (2008) availability
S seas 16 20an Stock Years 16-20 lagged returns, annual Heston and Sadka (2008) availability
S seas 16 20na Stock Years 16-20 lagged returns, nonannual Heston and Sadka (2008) availability
S seas 1 1an Stock Year 1-lagged return, annual Heston and Sadka (2008) insignificant
S seas 1 1na Stock Year 1-lagged return, nonannual Heston and Sadka (2008)
S seas 2 5an Stock Years 2-5 lagged returns, annual Heston and Sadka (2008)
S seas 2 5na Stock Years 2-5 lagged returns, nonannual Heston and Sadka (2008) insignificant
S seas 6 10an Stock Years 6-10 lagged returns, annual Heston and Sadka (2008)
S seas 6 10na Stock Years 6-10 lagged returns, nonannual Heston and Sadka (2008)
S sti gr1a Stock Change in short-term investments Richardson et al. (2005)
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S taccruals at Stock Total accruals Richardson et al. (2005)
S taccruals ni Stock Percent total accruals Hafzalla Lundholm and Van Winkle (2011)
S tangibility Stock Asset tangibility Hahn and Lee (2009)
S tax gr1a Stock Tax expense surprise Thomas and Zhang (2011) insignificant
S turnover 126d Stock Share turnover Datar Naik and Radcliffe (1998) correlation
S turnover var 126d Stock Coefficient of variation for share turnover Chordia Subrahmanyam and Anshuman (2001)
S z score Stock Altman Z-score Dichev (1998)
S zero trades 126d Stock Number of zero trades with turnover as tiebreaker (6 months) Liu (2006)
S zero trades 21d Stock Number of zero trades with turnover as tiebreaker (1 month) Liu (2006)
S zero trades 252d Stock Number of zero trades with turnover as tiebreaker (12 months) Liu (2006) correlation
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