Flow-Driven ESG Returns

Philippe van der Beck^{1,2}

May, 2023

< □ ▶ < 圖 ▶ < ≣ ▶ < ≣ ▶ ≣ の Q @ 2/29

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: pprox 0.002

ESG Impact = 200 Billion $\times 0.002 = 0.4$ Billion

This paper...

- 1. New measure of total ESG flows by all investors: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: pprox 0.002

ESG Impact = 200 Billion $\times 0.002 = 0.4$ Billion

This paper...

- 1. New measure of total ESG flows by all investors: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: ≈ 0.002

ESG Impact = 200 Billion × 0.002 = 0.4 Billion

This paper...

- 1. New measure of total ESG flows by <u>all investors</u>: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: ≈ 0.002

ESG Impact = 200 Billion $\times 0.002 = 0.4$ Billion

This paper...

- 1. New measure of total ESG flows by all investors: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: ≈ 0.002

ESG Impact = 200 Billion × 0.002 = 0.4 Billion

This paper...

- 1. New measure of total ESG flows by <u>all investors</u>: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: ≈ 0.002

ESG Impact = 200 Billion × 0.002 = 0.4 Billion

This paper...

- 1. New measure of total ESG flows by all investors: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: ≈ 0.002

ESG Impact = 200 Billion × 0.002 = 0.4 Billion

This paper...

- 1. New measure of total ESG flows by all investors: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

Naive approach...

- 1. Flows to labelled ESG funds: \$200 Billion
- 2. Price impact from CAPM calibration: ≈ 0.002

ESG Impact = 200 Billion × 0.002 = 0.4 Billion

This paper...

- 1. New measure of total ESG flows by all investors: \$1.3 Trillion
- 2. Estimate willingness to substitute between ESG and other stocks from institutional portfolio holdings. Then derive ESG price impact: ≈ 0.4

- Impact investing has price impact \$1 flow from market portfolio to ESG portfolio increases aggregate value ESG stocks by \$0.4
- ESG returns driven by ESG flows Under absence of price pressure from ESG flows, ESG funds would have not outperformed the market from 2016 to 2021
- ESG flows affect cross-section of ESG stocks The ESG stocks that received higher flows had higher returns in the cross-section. Impact of flows stronger when stocks held by inelastic/passive investors

- Impact investing has price impact \$1 flow from market portfolio to ESG portfolio increases aggregate value ESG stocks by \$0.4
- ESG returns driven by ESG flows Under absence of price pressure from ESG flows, ESG funds would have not outperformed the market from 2016 to 2021
- ESG flows affect cross-section of ESG stocks The ESG stocks that received higher flows had higher returns in the cross-section. Impact of flows stronger when stocks held by inelastic/passive investors

- Impact investing has price impact \$1 flow from market portfolio to ESG portfolio increases aggregate value ESG stocks by \$0.4
- ESG returns driven by ESG flows Under absence of price pressure from ESG flows, ESG funds would have not outperformed the market from 2016 to 2021
- ESG flows affect cross-section of ESG stocks The ESG stocks that received higher flows had higher returns in the cross-section. Impact of flows stronger when stocks held by inelastic/passive investors

- Impact investing has price impact \$1 flow from market portfolio to ESG portfolio increases aggregate value ESG stocks by \$0.4
- ESG returns driven by ESG flows Under absence of price pressure from ESG flows, ESG funds would have not outperformed the market from 2016 to 2021
- ESG flows affect cross-section of ESG stocks The ESG stocks that received higher flows had higher returns in the cross-section. Impact of flows stronger when stocks held by inelastic/passive investors

- 1. Drastic growth of the environmental, social and governance (ESG) investment industry in recent years
- 2. ESG funds had higher realized returns than market in recent years: Investors seem to be "doing well by doing good"
- 3. Wedge between *realized* and *expected* returns due to shifts in ESG preferences (Pastor, Taylor & Stambaugh, 2022)
- 4. But, for every buyer there is a seller. High willingness to substitute implies small impact (Berk & Binsbergen, 2022)
- 5. However, holdings data suggest low willingness to substitute between stocks (Koijen and Yogo, 2019)

- 1. Drastic growth of the environmental, social and governance (ESG) investment industry in recent years
- 2. ESG funds had higher realized returns than market in recent years: Investors seem to be "doing well by doing good"
- 3. Wedge between *realized* and *expected* returns due to shifts in ESG preferences (Pastor, Taylor & Stambaugh, 2022)
- 4. But, for every buyer there is a seller. High willingness to substitute implies small impact (Berk & Binsbergen, 2022)
- 5. However, holdings data suggest low willingness to substitute between stocks (Koijen and Yogo, 2019)

- 1. Drastic growth of the environmental, social and governance (ESG) investment industry in recent years
- 2. ESG funds had higher realized returns than market in recent years: Investors seem to be "doing well by doing good"
- 3. Wedge between *realized* and *expected* returns due to shifts in ESG preferences (Pastor, Taylor & Stambaugh, 2022)
- 4. But, for every buyer there is a seller. High willingness to substitute implies small impact (Berk & Binsbergen, 2022)
- 5. However, holdings data suggest low willingness to substitute between stocks (Koijen and Yogo, 2019)

- 1. Drastic growth of the environmental, social and governance (ESG) investment industry in recent years
- 2. ESG funds had higher realized returns than market in recent years: Investors seem to be "doing well by doing good"
- 3. Wedge between *realized* and *expected* returns due to shifts in ESG preferences (Pastor, Taylor & Stambaugh, 2022)
- 4. But, for every buyer there is a seller. High willingness to substitute implies small impact (Berk & Binsbergen, 2022)
- 5. However, holdings data suggest low willingness to substitute between stocks (Koijen and Yogo, 2019)

- 1. Drastic growth of the environmental, social and governance (ESG) investment industry in recent years
- 2. ESG funds had higher realized returns than market in recent years: Investors seem to be "doing well by doing good"
- 3. Wedge between *realized* and *expected* returns due to shifts in ESG preferences (Pastor, Taylor & Stambaugh, 2022)
- 4. But, for every buyer there is a seller. High willingness to substitute implies small impact (Berk & Binsbergen, 2022)
- 5. However, holdings data suggest low willingness to substitute between stocks (Koijen and Yogo, 2019)

- 1. Drastic growth of the environmental, social and governance (ESG) investment industry in recent years
- 2. ESG funds had higher realized returns than market in recent years: Investors seem to be "doing well by doing good"
- 3. Wedge between *realized* and *expected* returns due to shifts in ESG preferences (Pastor, Taylor & Stambaugh, 2022)
- 4. But, for every buyer there is a seller. High willingness to substitute implies small impact (Berk & Binsbergen, 2022)
- 5. However, holdings data suggest low willingness to substitute between stocks (Koijen and Yogo, 2019)

1. Accounting and Stock Market Data: CRSP & Compustat

- Price of stock n at quarter t denoted $P_{t,n}$
- Shares outstanding normalized to 1
- 2. Institutional Holdings Data: Thompson s34 & s12 file
 - $Q_{t,n}^i$ denotes shares held by fund *i*
 - $w_{t,n}^{i} = Q_{t,n}^{i} P_{t,n} / AUM_{t}^{i}$ is portfolio weight
- 3. Mutual Fund Flows: CRSP Mutual Fund Database
- 4. Sustainability Characteristics:
 - Revealed preferences measure from ESG funds' holdings
 - Refinitiv Carbon Intensity Data, Refinitiv ESG Scores, Fossil Fuel Indicator, and Sin Stock Indicator as robustness checks

1. Accounting and Stock Market Data: CRSP & Compustat

- Price of stock n at quarter t denoted $P_{t,n}$
- Shares outstanding normalized to 1

2. Institutional Holdings Data: Thompson s34 & s12 file

- $Q_{t,n}^i$ denotes shares held by fund *i*
- $w_{t,n}^{i} = Q_{t,n}^{i} P_{t,n} / AUM_{t}^{i}$ is portfolio weight
- 3. Mutual Fund Flows: CRSP Mutual Fund Database
- 4. Sustainability Characteristics:
 - Revealed preferences measure from ESG funds' holdings
 - Refinitiv Carbon Intensity Data, Refinitiv ESG Scores, Fossil Fuel Indicator, and Sin Stock Indicator as robustness checks

1. Accounting and Stock Market Data: CRSP & Compustat

- Price of stock *n* at quarter *t* denoted $P_{t,n}$
- Shares outstanding normalized to 1

2. Institutional Holdings Data: Thompson s34 & s12 file

- $Q_{t,n}^i$ denotes shares held by fund i
- $w_{t,n}^{i} = Q_{t,n}^{i} P_{t,n} / AUM_{t}^{i}$ is portfolio weight
- 3. Mutual Fund Flows: CRSP Mutual Fund Database
- 4. Sustainability Characteristics:
 - Revealed preferences measure from ESG funds' holdings
 - Refinitiv Carbon Intensity Data, Refinitiv ESG Scores, Fossil Fuel Indicator, and Sin Stock Indicator as robustness checks

1. Accounting and Stock Market Data: CRSP & Compustat

- Price of stock *n* at quarter *t* denoted $P_{t,n}$
- Shares outstanding normalized to 1

2. Institutional Holdings Data: Thompson s34 & s12 file

- $Q_{t,n}^i$ denotes shares held by fund i
- $w_{t,n}^{i} = Q_{t,n}^{i} P_{t,n} / AUM_{t}^{i}$ is portfolio weight

3. Mutual Fund Flows: CRSP Mutual Fund Database

4. Sustainability Characteristics:

- Revealed preferences measure from ESG funds' holdings
- Refinitiv Carbon Intensity Data, Refinitiv ESG Scores, Fossil Fuel Indicator, and Sin Stock Indicator as robustness checks

1. Accounting and Stock Market Data: CRSP & Compustat

- Price of stock *n* at quarter *t* denoted $P_{t,n}$
- Shares outstanding normalized to 1
- 2. Institutional Holdings Data: Thompson s34 & s12 file
 - $Q_{t,n}^i$ denotes shares held by fund i
 - $w_{t,n}^{i} = Q_{t,n}^{i} P_{t,n} / AUM_{t}^{i}$ is portfolio weight
- 3. Mutual Fund Flows: CRSP Mutual Fund Database
- 4. Sustainability Characteristics:
 - Revealed preferences measure from ESG funds' holdings
 - Refinitiv Carbon Intensity Data, Refinitiv ESG Scores, Fossil Fuel Indicator, and Sin Stock Indicator as robustness checks

- Identify 382 ESG mutual funds by matching fund names with a list of sustainability key words (Vanguard FTSE Social Fund, iShares ESG ETF, Calvert Impact Fund)
- Compute portfolio weight held by all ESG funds w_n^{ESG} by aggregating their holdings

Year	# Funds		Total AUM (\$ Billion)	% Indexed AUM	
				0.24	
2021		175			

- Identify 382 ESG mutual funds by matching fund names with a list of sustainability key words (Vanguard FTSE Social Fund, iShares ESG ETF, Calvert Impact Fund)
- Compute portfolio weight held by all ESG funds w_n^{ESG} by aggregating their holdings

Year	# Funds		Total AUM (\$ Billion)	% Indexed AUM	
				0.24	
2021		175			

- Identify 382 ESG mutual funds by matching fund names with a list of sustainability key words (Vanguard FTSE Social Fund, iShares ESG ETF, Calvert Impact Fund)
- Compute portfolio weight held by all ESG funds w_n^{ESG} by aggregating their holdings

# Funds		Total AUM (\$ Billion)	% Indexed AUM	
			0.24	
	175			
	# Funds 88 101 199 368	# Funds Avg. # Stocks 88 226 101 223 199 195 368 175	# Funds Avg. # Stocks Total AUM (\$ Billion) 88 226 25.02 101 223 36.80 199 195 63.19 368 175 233.48	# Funds Avg. # Stocks Total AUM (\$ Billion) % Indexed AUM 88 226 25.02 0.16 101 223 36.80 0.24 199 195 63.19 0.22 368 175 233.48 0.50

- Identify 382 ESG mutual funds by matching fund names with a list of sustainability key words (Vanguard FTSE Social Fund, iShares ESG ETF, Calvert Impact Fund)
- Compute portfolio weight held by all ESG funds w_n^{ESG} by aggregating their holdings

Year	# Funds	Avg. # Stocks	Total AUM (\$ Billion)	% Indexed AUM	Active Share
2012	88	226	25.02	0.16	0.69
2015	101	223	36.80	0.24	0.68
2018	199	195	63.19	0.22	0.63
2021	368	175	233.48	0.50	0.57

- Compare portfolio held by ESG funds w_n^{ESG} to aggregate portfolio held by all mutual funds w_n^{MF}
- Construct ESG taste measure using revealed preferences:

$$\tau_n^{ESG} = w_n^{ESG} - w_n^{MF}$$

1. Define ESG stocks as $\tau_n^{ESG} > 0$ 2. τ_n^{ESG} is significantly related to sustainability measures 3. τ_n^{ESG} is a long-short portfolio with 2.4 % 4F-alpha

- Compare portfolio held by ESG funds w_n^{ESG} to aggregate portfolio held by all mutual funds w_n^{MF}
- Construct ESG taste measure using revealed preferences:

$$\tau_n^{ESG} = w_n^{ESG} - w_n^{MF}$$

1. Define ESG stocks as $\tau_n^{ESG} > 0$ 2. τ_n^{ESG} is significantly related to sustainability measures 3. τ_n^{ESG} is a long-short portfolio with 2.4 % 4F-alpha

- Compare portfolio held by ESG funds w_n^{ESG} to aggregate portfolio held by all mutual funds w_n^{MF}
- Construct ESG taste measure using revealed preferences:

$$\tau_n^{ESG} = w_n^{ESG} - w_n^{MF}$$

1. Define ESG stocks as $\tau_n^{ESG} > 0$ 2. τ_n^{ESG} is significantly related to sustainability measures 3. τ_n^{ESG} is a long-short portfolio with 2.4 % 4F-alpha

- Compare portfolio held by ESG funds w_n^{ESG} to aggregate portfolio held by all mutual funds w_n^{MF}
- Construct ESG taste measure using revealed preferences:

$$\tau_n^{ESG} = w_n^{ESG} - w_n^{MF}$$

1. Define ESG stocks as $\tau_n^{ESG} > 0$ 2. τ_n^{ESG} is significantly related to sustainability measures 3. τ_n^{ESG} is a long-short portfolio with 2.4 % 4F-alpha

- Compare portfolio held by ESG funds w_n^{ESG} to aggregate portfolio held by all mutual funds w_n^{MF}
- Construct ESG taste measure using revealed preferences:

$$\tau_n^{ESG} = w_n^{ESG} - w_n^{MF}$$

1. Define ESG stocks as $\tau_n^{ESG} > 0$ 2. τ_n^{ESG} is significantly related to sustainability measures 3. τ_n^{ESG} is a long-short portfolio with 2.4 % 4F-alpha

- Compare portfolio held by ESG funds w_n^{ESG} to aggregate portfolio held by all mutual funds w_n^{MF}
- Construct ESG taste measure using revealed preferences:

$$\tau_n^{ESG} = w_n^{ESG} - w_n^{MF}$$

1. Define ESG stocks as $\tau_n^{ESG} > 0$ 2. τ_n^{ESG} is significantly related to sustainability measures 3. τ_n^{ESG} is a long-short portfolio with 2.4 % 4F-alpha

ESG stocks versus non-ESG stocks

• Compute portfolio share of each investor *i* at quarter *t* by projecting weights onto managed portfolios *S*

$$w_n = \sum_{s=1}^{S} \beta^s w_n^s + a_n$$

where S includes includes ESG, market, industry and different style portfolios (value, growth etc.)

Institution i's dollars in ESG portfolio

$$A_{i,t}^{ESG} = \beta_{i,t}^{ESG} * AUM_{i,t}$$

• Compute portfolio share of each investor *i* at quarter *t* by projecting weights onto managed portfolios *S*

$$w_n = \sum_{s=1}^{S} \beta^s w_n^s + a_n$$

where S includes includes ESG, market, industry and different style portfolios (value, growth etc.)

• Institution *i*'s dollars in ESG portfolio

$$A_{i,t}^{ESG} = \beta_{i,t}^{ESG} * AUM_{i,t}$$

• Compute portfolio share of each investor *i* at quarter *t* by projecting weights onto managed portfolios *S*

$$w_n = \sum_{s=1}^{S} \beta^s w_n^s + a_n$$

where S includes includes ESG, market, industry and different style portfolios (value, growth etc.)

• Institution i's dollars in ESG portfolio

$$A_{i,t}^{ESG} = \beta_{i,t}^{ESG} * AUM_{i,t}$$

• Compute portfolio share of each investor *i* at quarter *t* by projecting weights onto managed portfolios *S*

$$w_n = \sum_{s=1}^{S} \beta^s w_n^s + a_n$$

where S includes includes ESG, market, industry and different style portfolios (value, growth etc.)

• Institution *i*'s dollars in ESG portfolio

$$A_{i,t}^{ESG} = \beta_{i,t}^{ESG} * AUM_{i,t}$$

Flows into the ESG Portfolio

- ESG flow from labelled ESG mutual funds: \$200 Billion
- ESG flow from all 13F institutions: \$1.3 Trillion

Why not directly regress ESG returns onto ESG flows?

 $\mathsf{ESG-Return}_t = \mathcal{M} * \mathsf{ESG-Flow}_t + \epsilon_t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 12/29

- ESG returns and flows driven by many variables (ESG regulation, climate news etc.)
- Reversed causality: Flows chasing returns

Can we identify ${\mathcal M}$ from holdings data?

Why not directly regress ESG returns onto ESG flows?

 $\mathsf{ESG-Return}_t = \mathcal{M} * \mathsf{ESG-Flow}_t + \epsilon_t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 12/29

- ESG returns and flows driven by many variables (ESG regulation, climate news etc.)
- Reversed causality: Flows chasing returns

Can we identify ${\mathcal M}$ from holdings data?

Why not directly regress ESG returns onto ESG flows?

 $\mathsf{ESG-Return}_t = \mathcal{M} * \mathsf{ESG-Flow}_t + \epsilon_t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 12/29

- ESG returns and flows driven by many variables (ESG regulation, climate news etc.)
- Reversed causality: Flows chasing returns

Can we identify ${\mathcal M}$ from holdings data?

Why not directly regress ESG returns onto ESG flows?

 $\mathsf{ESG-Return}_t = \mathcal{M} * \mathsf{ESG-Flow}_t + \epsilon_t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ ○ 12/29

- ESG returns and flows driven by many variables (ESG regulation, climate news etc.)
- Reversed causality: Flows chasing returns

Can we identify \mathcal{M} from holdings data?

- Investor i chooses an optimal portfolio Qⁱ across N stocks
- Price-Elasticity of Demand $\zeta^i \in \mathbb{R}^{N \times N}$:

$$\zeta^{i} = -\frac{\text{Change in Demand (\%)}}{\text{Change in Price (\%)}} = -\frac{\Delta Q^{i}/Q^{i}}{\Delta P/P}$$

1. Stock-Specific Elasticity: ζ_n^i .

Shell goes up by 1%, how much Shell stock does Blackrock sell?

- 2. Cross-Elasticity: ζ_{mn}^{i} . Shell goes up by 1%, how much Exxon stock does Blackrock sell?
- 3. Aggregate Elasticity Matrix: ζ

- Investor *i* chooses an optimal portfolio Q^i across *N* stocks
- Price-Elasticity of Demand $\zeta^i \in \mathbb{R}^{N \times N}$:

$$\zeta^{i} = -\frac{\text{Change in Demand (\%)}}{\text{Change in Price (\%)}} = -\frac{\Delta Q^{i}/Q^{i}}{\Delta P/P}$$

1. Stock-Specific Elasticity: ζ_n^i .

Shell goes up by 1%, how much Shell stock does Blackrock sell?

- 2. Cross-Elasticity: ζ_{mn}^{i} . Shell goes up by 1%, how much Exxon stock does Blackrock sel
- 3. Aggregate Elasticity Matrix: ζ

- Investor i chooses an optimal portfolio Qⁱ across N stocks
- Price-Elasticity of Demand $\zeta^i \in \mathbb{R}^{N \times N}$:

$$\zeta^{i} = -\frac{\text{Change in Demand (\%)}}{\text{Change in Price (\%)}} = -\frac{\Delta Q^{i}/Q^{i}}{\Delta P/P}$$

- 1. Stock-Specific Elasticity: ζ_n^i . Shell goes up by 1%, how much Shell stock does Blackrock sell?
- Cross-Elasticity: ζ[†]_{mn}.
 Shell goes up by 1%, how much Exxon stock does Blackrock sell?
- 3. Aggregate Elasticity Matrix: ζ

- Investor i chooses an optimal portfolio Qⁱ across N stocks
- Price-Elasticity of Demand $\zeta^i \in \mathbb{R}^{N \times N}$:

$$\zeta^{i} = -\frac{\text{Change in Demand (\%)}}{\text{Change in Price (\%)}} = -\frac{\Delta Q^{i}/Q^{i}}{\Delta P/P}$$

- 1. Stock-Specific Elasticity: ζ_n^i . Shell goes up by 1%, how much Shell stock does Blackrock sell?
- 2. Cross-Elasticity: ζ'_{mn} . Shell goes up by 1%, how much Exxon stock does Blackrock sell?
- 3. Aggregate Elasticity Matrix: ζ

- Investor i chooses an optimal portfolio Qⁱ across N stocks
- Price-Elasticity of Demand $\zeta^i \in \mathbb{R}^{N \times N}$:

$$\zeta^{i} = -\frac{\text{Change in Demand (\%)}}{\text{Change in Price (\%)}} = -\frac{\Delta Q^{i}/Q^{i}}{\Delta P/P}$$

- Stock-Specific Elasticity: ζⁱ_n. Shell goes up by 1%, how much Shell stock does Blackrock sell?
- Cross-Elasticity: ζⁱ_{mn}.
 Shell goes up by 1%, how much Exxon stock does Blackrock sell?
- 3. Aggregate Elasticity Matrix: Q

- Investor i chooses an optimal portfolio Qⁱ across N stocks
- Price-Elasticity of Demand $\zeta^i \in \mathbb{R}^{N \times N}$:

$$\zeta^{i} = -\frac{\text{Change in Demand (\%)}}{\text{Change in Price (\%)}} = -\frac{\Delta Q^{i}/Q^{i}}{\Delta P/P}$$

- Stock-Specific Elasticity: ζⁱ_n. Shell goes up by 1%, how much Shell stock does Blackrock sell?
- Cross-Elasticity: ζⁱ_{mn}.
 Shell goes up by 1%, how much Exxon stock does Blackrock sell?
- 3. Aggregate Elasticity Matrix: ζ

- Now assume a dollar flow to the ESG portfolio w^{ESG} resulting in a demand shock F_t^{ESG}
- In equilibrium prices have to change in order to induce investors to accommodate the flow
- It can be shown that this leads to a *realized* ESG return

$$\mathsf{ESG-Return}_t = \mathcal{M} * F_t^{\mathsf{ESG}}$$

where $\mathcal{M} = (\sum_i Q^i \zeta^i)^{-1}$ is inverse of the aggregate price elasticity of demand

• Flow-driven ESG return depends on investors' willingness to substitute between stocks ζ^i

- Now assume a dollar flow to the ESG portfolio w^{ESG} resulting in a demand shock F_t^{ESG}
- In equilibrium prices have to change in order to induce investors to accommodate the flow
- It can be shown that this leads to a *realized* ESG return

 $\mathsf{ESG-Return}_t = \mathcal{M} * F_t^{\mathsf{ESG}}$

where $\mathcal{M} = (\sum_i Q^i \zeta^i)^{-1}$ is inverse of the aggregate price elasticity of demand

• Flow-driven ESG return depends on investors' willingness to substitute between stocks ζ^i

- Now assume a dollar flow to the ESG portfolio w^{ESG} resulting in a demand shock F_t^{ESG}
- In equilibrium prices have to change in order to induce investors to accommodate the flow
- It can be shown that this leads to a *realized* ESG return

$$\mathsf{ESG-Return}_t = \mathcal{M} * F_t^{\mathsf{ESG}}$$

where $\mathcal{M} = (\sum_i Q^i \zeta^i)^{-1}$ is inverse of the aggregate price elasticity of demand

• Flow-driven ESG return depends on investors' willingness to substitute between stocks ζ^i

- Now assume a dollar flow to the ESG portfolio w^{ESG} resulting in a demand shock F_t^{ESG}
- In equilibrium prices have to change in order to induce investors to accommodate the flow
- It can be shown that this leads to a *realized* ESG return

$$\mathsf{ESG-Return}_t = \mathcal{M} * F_t^{\mathsf{ESG}}$$

where $\mathcal{M} = (\sum_i Q^i \zeta^i)^{-1}$ is inverse of the aggregate price elasticity of demand

• Flow-driven ESG return depends on investors' willingness to substitute between stocks ζ^i

- Now assume a dollar flow to the ESG portfolio w^{ESG} resulting in a demand shock F_t^{ESG}
- In equilibrium prices have to change in order to induce investors to accommodate the flow
- It can be shown that this leads to a *realized* ESG return

$$\mathsf{ESG-Return}_t = \mathcal{M} * F_t^{\mathsf{ESG}}$$

where $\mathcal{M} = (\sum_i Q^i \zeta^i)^{-1}$ is inverse of the aggregate price elasticity of demand

• Flow-driven ESG return depends on investors' willingness to substitute between stocks ζ^i

Estimating elasticities from trades (van der Beck, 2022)

• Use 13F filings to construct quarterly institutional trades from changes in shares held $Q_{t,n}^i$

$$\Delta q_{t,n}^i = \log Q_{t,n}^i - \log Q_{t-1,n}^i$$

Example: If Blackrock holds 100 shares of Apple in 2010 Q1 and 105 shares in 2010 Q2 then $\Delta q \approx 5\%$

• Regress trades $\Delta q_{t,n}^i$ on quarterly returns $\Delta p_{t,n}$ to infer elasticities:

$$\Delta q_{t,n}^{i} = -\zeta^{i} \Delta p_{t,n} + Controls + \epsilon_{n}^{i}$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = つへで 15/29</p>

Estimating elasticities from trades (van der Beck, 2022)

• Use 13F filings to construct quarterly institutional trades from changes in shares held $Q_{t,n}^i$

$$\Delta q_{t,n}^i = \log Q_{t,n}^i - \log Q_{t-1,n}^i$$

Example: If Blackrock holds 100 shares of Apple in 2010 Q1 and 105 shares in 2010 Q2 then $\Delta q\approx 5\%$

• Regress trades $\Delta q_{t,n}^i$ on quarterly returns $\Delta p_{t,n}$ to infer elasticities:

$$\Delta q_{t,n}^{i} = -\zeta^{i} \Delta p_{t,n} + Controls + \epsilon_{n}^{i}$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = つへで 15/29</p>

Estimating elasticities from trades (van der Beck, 2022)

• Use 13F filings to construct quarterly institutional trades from changes in shares held $Q_{t,n}^i$

$$\Delta q_{t,n}^i = \log Q_{t,n}^i - \log Q_{t-1,n}^i$$

Example: If Blackrock holds 100 shares of Apple in 2010 Q1 and 105 shares in 2010 Q2 then $\Delta q \approx 5\%$

• Regress trades $\Delta q_{t,n}^i$ on quarterly returns $\Delta p_{t,n}$ to infer elasticities:

$$\Delta q_{t,n}^{i} = -\zeta^{i} \Delta p_{t,n} + Controls + \epsilon_{n}^{i}$$

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = つへで 15/29</p>

- Prices and quantities are jointly determined in equilibrium: Need instrument (exogenous variation) for prices to identify elasticities!
- Intuition: To identify elasticity of investor *i*, use exogenous demand shocks by other investors *j* ≠ *i*
- 3 Sources of Exogenous Demand Shocks by some investors

- 1. Flow-driven trades by Mutual Funds
- 2. ESG Index Inclusions
- 3. Dividend Reinvestments

- Prices and quantities are jointly determined in equilibrium: Need instrument (exogenous variation) for prices to identify elasticities!
- Intuition: To identify elasticity of investor *i*, use exogenous demand shocks by other investors *j* ≠ *i*
- 3 Sources of Exogenous Demand Shocks by some investors

- 1. Flow-driven trades by Mutual Funds
- 2. ESG Index Inclusions
- 3. Dividend Reinvestments

- Prices and quantities are jointly determined in equilibrium: Need instrument (exogenous variation) for prices to identify elasticities!
- Intuition: To identify elasticity of investor *i*, use exogenous demand shocks by other investors *j* ≠ *i*
- 3 Sources of Exogenous Demand Shocks by *some* investors

- 1. Flow-driven trades by Mutual Funds
- 2. ESG Index Inclusions
- 3. Dividend Reinvestments

- Prices and quantities are jointly determined in equilibrium: Need instrument (exogenous variation) for prices to identify elasticities!
- Intuition: To identify elasticity of investor *i*, use exogenous demand shocks by other investors *j* ≠ *i*
- 3 Sources of Exogenous Demand Shocks by *some* investors

- 1. Flow-driven trades by Mutual Funds
- 2. ESG Index Inclusions
- 3. Dividend Reinvestments

Estimating Elasticities for all Investors

• Construct trades Δq_t^i for all 13F investors from 2010 to 2020 (household sector holds remaining shares)

Estimation

Pool investors by institutional type and estimate elasticity via 2SLS

1. First Stage: Construct exogenous shocks to prices

 $\Delta p_{t,n} = \beta * \text{Demand Shock}_{t,n}^{-i} + Controls + \varepsilon_{t,n}^{i}$

2. Second Stage: *Identify elasticities from price shock*

$$\Delta q_{t,n}^i = -\zeta^i * \Delta \hat{p}_{t,n}^i + Controls + \epsilon_{t,n}^i$$

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで 17/29

Estimating Elasticities for all Investors

• Construct trades Δq_t^i for all 13F investors from 2010 to 2020 (household sector holds remaining shares)

Estimation

Pool investors by institutional type and estimate elasticity via 2SLS

1. First Stage: Construct exogenous shocks to prices

 $\Delta p_{t,n} = \beta * \text{Demand Shock}_{t,n}^{-i} + Controls + \varepsilon_{t,n}^{i}$

2. Second Stage: *Identify elasticities from price shock*

$$\Delta q_{t,n}^{i} = -\zeta^{i} * \Delta \hat{p}_{t,n}^{i} + Controls + \epsilon_{t,n}^{i}$$

▲□▶▲@▶▲≧▶▲≧▶ ≧ のへで 17/29

Estimating Elasticities for all Investors

• Construct trades Δq_t^i for all 13F investors from 2010 to 2020 (household sector holds remaining shares)

Estimation

Pool investors by institutional type and estimate elasticity via 2SLS

1. First Stage: Construct exogenous shocks to prices

$$\Delta p_{t,n} = \beta * \text{Demand Shock}_{t,n}^{-i} + Controls + \varepsilon_{t,n}^{i}$$

2. Second Stage: Identify elasticities from price shock

$$\Delta q_{t,n}^{i} = -\zeta^{i} * \Delta \hat{p}_{t,n}^{i} + \textit{Controls} + \epsilon_{t,n}^{i}$$

Estimated Demand Coefficients

	ζ^i Identified from Trades $\Delta q_{t,n}$	ζ^i in Koijen and Yogo (2019)
Pooled All	1.054 (0.033)	0.282 (0.001)
Pooled by Type		
Mutual Funds		
High Active Share	3.198 (0.305)	0.744 (0.004)
Medium Active Share	2.660 (0.298)	0.477 (0.004)
Low Active Share	1.296 (0.092)	-0.142 (0.003)
Banks	1.292 (0.118)	0.238 (0.002)
Pension funds	0.838 (0.081)	0.322 (0.002)
Insurance companies	0.387 (0.168)	0.321 (0.003)
Households	0.724 (0.244)	0.530 (0.009)

- Take elasticity of each investor and compute ownership-weighted average for each stock
- Buying \$1 of average ESG stock increases prices by $\mathcal{M}_{ESG} = \$1.11$
- What happens to other ESG and non-ESG stocks?

	\mathcal{M}_{ESG}	Cross-Multipliers ($\times 10^4$)	
		$\mathcal{M}_{ESG,ESG}$	$\mathcal{M}_{NonESG,ESG}$
Mean	1.11		-1.40
10th Pctl.	1.01		
	1.09		
90th Pctl.	1.25	0.43	

- Take elasticity of each investor and compute ownership-weighted average for each stock
- Buying \$1 of average ESG stock increases prices by $\mathcal{M}_{ESG} = \$1.11$
- What happens to other ESG and non-ESG stocks?

	\mathcal{M}_{ESG}	Cross-Multipliers ($\times 10^4$)	
		$\mathcal{M}_{ESG,ESG}$	$\mathcal{M}_{NonESG,ESG}$
Mean	1.11		-1.40
10th Pctl.	1.01		
Median	1.09		
90th Pctl.	1.25	0.43	

- Take elasticity of each investor and compute ownership-weighted average for each stock
- Buying \$1 of average ESG stock increases prices by $\mathcal{M}_{ESG} = \$1.11$
- What happens to other ESG and non-ESG stocks?

	\mathcal{M}_{ESG}	Cross-Multipliers ($\times 10^4$)	
		$\mathcal{M}_{ESG,ESG}$	$\mathcal{M}_{NonESG,ESG}$
Mean	1.11		-1.40
10th Pctl.	1.01		
Median	1.09		
90th Pctl.	1.25	0.43	

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ → ○ へ ○ 19/29

- Take elasticity of each investor and compute ownership-weighted average for each stock
- Buying \$1 of average ESG stock increases prices by $\mathcal{M}_{ESG} = \$1.11$
- What happens to other ESG and non-ESG stocks?

		Cross-Multipliers (×10 ⁴)	
	\mathcal{M}_{ESG}	$\mathcal{M}_{ESG,ESG}$	$\mathcal{M}_{NonESG,ESG}$
Mean	1.11	-0.86	-1.40
10th Pctl.	1.01	-2.30	-3.23
Median	1.09	-0.05	-0.12
90th Pctl.	1.25	0.43	0.36

ESG Flow Multiplier

By how much does \$1 ESG flow raise the value of all ESG stocks?

Impact Investing at the Fund Level

		Impact of	ct of 1\$ into fund <i>i</i> onto		
	Deviation from S&P500 (Active Share)	ESG Stocks	Fossil Fuel Stocks	Sin Stocks	
TIAA-CREF Social Choice Fund	0.48	0.98	0.12	-0.02	
Calvert Social Investment Fund	0.72	2.71	-0.11	-0.09	
Vanguard FTSE Social Index Fund	0.36	0.43	-0.09	-0.10	
iShares MSCI ESG ETF	0.39	0.54	0.17	0.05	

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 21/29

- 1. Many ESG funds do not deviate from market
- 2. ESG funds differ strongly in their impact
- 3. New impact-criterion to distinguish ESG funds

Counterfactual ESG Returns in Absence of ESG Flows

	Return	lpha (CAPM)	(CH4 + Green)
True Returns: Empirically Observed			
			1.51
t-statistic		(3.47)	
Counterfactual Returns: In Absence of Total ESG Flows			
	0.04		
t-statistic			

Counterfactual ESG Returns in Absence of ESG Flows

	Return	α (CAPM)	(CH4+Green)
True Returns: Empirically Observed			
Return (%)	2.01	2.40	1.51
t-statistic	(2.91)	(3.47)	(2.01)
Counterfactual Returns: In Absence of Total ESG Flows			
Return (%)	0.04	0.57	-0.30
t-statistic	(0.05)	(0.77)	(-0.38)

- Compute inflow into individual ESG stocks Δd_n (using fund flows and lagged portfolio weights)
- Model implies that flow-driven return is

$$\Delta p_n^{Flow} = \mathcal{M}_n \Delta d_n$$

• Simple cross-sectional regression over subset of ESG stocks using cumulative returns from 2016-2021

$$\Delta p_n = \beta \Delta p_n^{Flow} + Controls + \epsilon_n$$

- Compute inflow into individual ESG stocks Δd_n (using fund flows and lagged portfolio weights)
- Model implies that flow-driven return is

$$\Delta p_n^{Flow} = \mathcal{M}_n \Delta d_n$$

• Simple cross-sectional regression over subset of ESG stocks using cumulative returns from 2016-2021

$$\Delta p_n = \beta \Delta p_n^{Flow} + Controls + \epsilon_n$$

- Compute inflow into individual ESG stocks Δd_n (using fund flows and lagged portfolio weights)
- Model implies that flow-driven return is

$$\Delta p_n^{Flow} = \mathcal{M}_n \Delta d_n$$

• Simple cross-sectional regression over subset of ESG stocks using cumulative returns from 2016-2021

$$\Delta p_n = \beta \Delta p_n^{Flow} + Controls + \epsilon_n$$

- Compute inflow into individual ESG stocks Δd_n (using fund flows and lagged portfolio weights)
- Model implies that flow-driven return is

$$\Delta p_n^{Flow} = \mathcal{M}_n \Delta d_n$$

• Simple cross-sectional regression over subset of ESG stocks using cumulative returns from 2016-2021

$$\Delta p_n = \beta \Delta p_n^{Flow} + Controls + \epsilon_n$$

<□▶ < @▶ < E▶ < E▶ E のQ (* 23/29)</p>

- Compute inflow into individual ESG stocks Δd_n (using fund flows and lagged portfolio weights)
- Model implies that flow-driven return is

$$\Delta p_n^{Flow} = \mathcal{M}_n \Delta d_n$$

• Simple cross-sectional regression over subset of ESG stocks using cumulative returns from 2016-2021

$$\Delta p_n = \beta \Delta p_n^{Flow} + Controls + \epsilon_n$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q @ 24/29

- Approximate flow-driven impact: Impact_n = $\frac{\Delta p_n}{\Delta d_n}$
- Regress Impact_n on \mathcal{M}_n in the cross-section

	Price Impact $\Delta_{Pn}/\Delta d_n$
const	1.809
	(1.418)
\mathcal{M}_n	2.813***
_og ME	-0.211***
	(-4.488)
	0.154

• Approximate flow-driven impact: Impact_n = $\frac{\Delta p_n}{\Delta d_n}$

• Regress Impact_n on \mathcal{M}_n in the cross-section

	Price Impact $\Delta p_n/\Delta d_n$
const	1.809
	(1.418)
\mathcal{M}_n	2.813***
.og ME	-0.211***
	(-4.488)
	0.154

- Approximate flow-driven impact: Impact_n = $\frac{\Delta p_n}{\Delta d_n}$
- Regress Impact_n on \mathcal{M}_n in the cross-section

	Price Impact ^{Δpn} /Δdn
const	1.809
	(1.418)
\mathcal{M}_n	2.813***
.og ME	-0.211***
	(-4.488)
	0.154

- Approximate flow-driven impact: Impact_n = $\frac{\Delta p_n}{\Delta d_n}$
- Regress Impact_n on \mathcal{M}_n in the cross-section

	Price Impact $\Delta_{Pn/\Delta d_n}$
const	1.809
	(1.418)
\mathcal{M}_n	2.813***
	(3.598)
Log ME	-0.211***
	(-4.488)
Beta	0.154
	(1.313)

- Stocks included in FTSE 4Good Index are strict subset of FTSE USA Index (Berk and Binsbergen, 2022)
- Regress Quarterly Returns onto Index Inclusion Dummy $I_{n,t}^{4G}$

 Realized Returns		
	0.068** (2.38)	
125263		

Index additions have 6.8% return and 7.9% higher mutual fund ownership: Multiplier ^{6.8}/_{7.9} = 0.87
□ → (2) →

- Stocks included in FTSE 4Good Index are strict subset of FTSE USA Index (Berk and Binsbergen, 2022)
- Regress Quarterly Returns onto Index Inclusion Dummy I^{4G}_{n,t}

Realized Returns		
	0.068** (2.38)	
125263		

Index additions have 6.8% return and 7.9% higher mutual fund ownership: Multiplier ^{6.8}/_{7.9} = 0.87
□ → (2) →

- Stocks included in FTSE 4Good Index are strict subset of FTSE USA Index (Berk and Binsbergen, 2022)
- Regress Quarterly Returns onto Index Inclusion Dummy I^{4G}_{n,t}

 Realized Returns		
	0.068** (2.38)	
125263		

Index additions have 6.8% return and 7.9% higher mutual fund ownership: Multiplier 6.8/7.9 = 0.87/29

- Stocks included in FTSE 4Good Index are strict subset of FTSE USA Index (Berk and Binsbergen, 2022)
- Regress Quarterly Returns onto Index Inclusion Dummy I^{4G}_{n,t}

	Realized	Realized Returns	
$I_{n,t}^{4G}$	0.009 (0.29)	0.001 (0.05)	
$I_{n,t}^{4G} imes I$ (Tracked by ESG Funds)		0.068** (2.38)	
Observations	125263	125263	

Index additions have 6.8% return and 7.9% higher mutual fund ownership: Multiplier 6.8/7.9 = 0.87
27/29

- Stocks included in FTSE 4Good Index are strict subset of FTSE USA Index (Berk and Binsbergen, 2022)
- Regress Quarterly Returns onto Index Inclusion Dummy I^{4G}_{n,t}

	Realized	Realized Returns		
$I_{n,t}^{4G}$	0.009 (0.29)	0.001 (0.05)		
$I_{n,t}^{4G} imes I$ (Tracked by ESG Funds)		0.068** (2.38)		
Observations	125263	125263		

• Index additions have 6.8% return and 7.9% higher mutual fund ownership: Multiplier $\frac{6.8}{7.9} = 0.87$

- Instead of regressing ESG returns onto flows, I estimate the ESG flow multiplier structurally from holdings data
- ESG Flows have a large impact on the cross-section of prices and therefore the realized returns to ESG investing
- Under absence of price pressure from ESG flows investors would have had to make return concession by investing according to their ESG preferences

<□▶ < @▶ < E▶ < E▶ E のQC 28/29</p>

- Instead of regressing ESG returns onto flows, I estimate the ESG flow multiplier structurally from holdings data
- ESG Flows have a large impact on the cross-section of prices and therefore the realized returns to ESG investing
- Under absence of price pressure from ESG flows investors would have had to make return concession by investing according to their ESG preferences

- Instead of regressing ESG returns onto flows, I estimate the ESG flow multiplier structurally from holdings data
- ESG Flows have a large impact on the cross-section of prices and therefore the realized returns to ESG investing
- Under absence of price pressure from ESG flows investors would have had to make return concession by investing according to their ESG preferences

- Instead of regressing ESG returns onto flows, I estimate the ESG flow multiplier structurally from holdings data
- ESG Flows have a large impact on the cross-section of prices and therefore the realized returns to ESG investing
- Under absence of price pressure from ESG flows investors would have had to make return concession by investing according to their ESG preferences

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 28/29

- Instead of regressing ESG returns onto flows, I estimate the ESG flow multiplier structurally from holdings data
- ESG Flows have a large impact on the cross-section of prices and therefore the realized returns to ESG investing
- Under absence of price pressure from ESG flows investors would have had to make return concession by investing according to their ESG preferences

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 28/29

References

- Koijen, R.S. and Yogo, M., 2019. A demand system approach to asset pricing. Journal of Political Economy, 127(4), pp.1475-1515.
- Berk, J. and van Binsbergen, J.H., 2021. The impact of impact investing.
- Pástor, Ľ., Stambaugh, R.F. and Taylor, L.A., 2022. Dissecting green returns. Journal of Financial Economics, 146(2), pp.403-424.
- van der Beck, P., 2022. On the Estimation of Demand-Based Asset Pricing Models (No. 22-67). Swiss Finance Institute.