

High Idiosyncratic Volatility and Low Returns

Andrew Ang Columbia University and NBER

Q Group October 2007, Scottsdale AZ

Monday October 15, 2007

References

- "The Cross-Section of Volatility and Expected Returns" Journal of Finance, February 2006
- "High Idiosyncratic Volatility and Low Returns: International and Further U.S. Evidence" September 2007
- Available at http://www.columbia.edu/~aa610
- Co-authors:
 - Bob Hodrick Columbia and NBER
 - Yuhang Xing Rice
 - Xiaoyan Zhang Cornell

- Idiosyncratic volatility
 - Should be diversifiable if factor models are correctly specified
 - If agents cannot fully diversify away firm-specific risk, stocks with high idiosyncratic volatility should earn high expected returns (see Merton, 1987)
- Using a standard definition of systematic risk, is there a reward or discount for idiosyncratic volatility in the crosssection?
- Data from 23 countries

• Local Fama-French (L-FF)

$$r_i = \alpha_i^L + \beta_i^L M K T^L + s_i^L S M B^L + h_i^L H M L^L + \varepsilon_i^L$$

where MKT = market excess return, SMB = Fama-French size factor, HML = Fama-French value/growth factor

• Regional Fama-French (R-FF)

$$r_i = \alpha_i^R + \beta_i^R MKT^R + s_i^R SMB^R + h_i^R HML^R + \varepsilon_i^R$$

for North America, Europe, and the Far East

• World Fama-French (W-FF)

$$r_i = \alpha_i^W + \beta_i^W MKT^W + s_i^W SMB^W + h_i^W HML^W + \varepsilon_i^W$$

defining world FF factors as value-weighted sums of the regional FF factors

• Define idiosyncratic volatility as $\sqrt{\operatorname{var}(\varepsilon_i^L)}$, $\sqrt{\operatorname{var}(\varepsilon_i^R)}$, or $\sqrt{\operatorname{var}(\varepsilon_i^W)}$ using daily excess returns over the past month

Idiosyncratic Volatility and Expected Returns

• Fama-MacBeth (1973) Regression:

 $r_i(t,t+1) = c + \gamma \sigma_i(t-1,t) + \lambda_\beta \beta_i(t,t+1) + \lambda_z z_i(t) + \varepsilon_i(t+1)$ where $r_i(t,t+1)$ is firm i's excess return from t to t+1 $\sigma_i(t-1,t)$ is idiosyncratic volatility computed from t-1 to t $\beta_i(t,t+1)$ are contemporaneous factor loadings $z_i(t)$ are firm characteristics at time t

- Test null that $\gamma = 0$
- Also examine portfolios formed on $\sigma_i(t-1,t)$

- U.S. Data, 1963-2003
- MSCI 23 developed markets, 1980-2003
- Individually examine G7 countries
 - G7: Canada, France, Germany, Italy, Japan, U.K., U.S.
 - Other: Australia, Austria, Belgium, Denmark, Finland, Greece, Hong Kong, Ireland, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland
- Size, book-to-market, past return (momentum) characteristics for all stocks. Additional controls for U.S. stocks.

Coefficients on W-FF Idiosyncratic Volatility

	U.S.	Canada	France	Germany	Italy	Japan	U.K.
γ	-2.014	-1.224	-1.439	-2.003	-1.572	-1.955	-0.871
T-stat	[-6.67]	[-2.46]	[-2.14]	[-3.85]	[-2.10]	[-5.18]	[-2.54]

Coefficients on W-FF Idiosyncratic Volatility

	U.S.	Canada	France	Germany	Italy	Japan	U.K.
γ	-2.014	-1.224	-1.439	-2.003	-1.572	-1.955	-0.871
T-stat	[-6.67]	[-2.46]	[-2.14]	[-3.85]	[-2.10]	[-5.18]	[-2.54]

Interquartile Spread of $\sigma_i(t-1,t)$

36.1% 25.2% 17.8% 18.5% 16.9% 16.5% 17.4%

Economic Effect of Moving from the 25th to 75th Percentiles

-0.73% -0.31% -0.26% -0.37% -0.27% -0.32% -0.15%

Geographic Areas		G7 C	Countries	All Countries		
Europe	Far East	G7 G7 ex US		All	All ex US	
-0.668	-1.177	-1.747	-1.069	-1.536	-0.604	
[-2.33]	[-3.17]	[-6.40]	[-4.14]	[-5.82]	[-2.32]	

Controls:

Factor Loadings: World MKT, SMB, HML Characteristics: Size, Book-to-market, Lagged 6-mth returns Separate G7 Country Dummies

Geographic Areas		G7 C	countries	All Countries		
Europe	Far East	G7	G7 G7 ex US		All ex US	
-0.893	-1.267	-1.974	-1.287	-1.750	-0.846	
[-3.17]	[-3.38]	[-6.89]	[-4.90]	[-6.41]	[-3.26]	

Controls:

Factor Loadings: World MKT, SMB, HML Characteristics: Size, Book-to-market, Lagged 6-mth returns Separate G7 Country Dummies

Coefficient on W-FF Idiosyncratic Volatility

	1 month	3 months	6 months	12 months	
US	-2.243	-2.461	-2.091	-1.273	
	[-7.00]	[-5.68]	[-4.35]	[-2.60]	
All ex US	-0.846	-0.930	-0.685	-0.605	
	[-3.26]	[-2.93]	[-2.07]	[-1.98]	

- Form quintile portfolios ranked on past idiosyncratic volatility in each country
- Create portfolios across regions by forming value-weighted country quintile portfolios
- Rebalance every month
- Report alphas with respect to the W-FF risk model
- Denote the 5-1 strategy (going long quintile 5 and short quintile 1) in the U.S. as VOL^{US}

Quintile Portfolio Returns

W-FF Alphas of G7 and G7ex US

Quintile Portfolio Returns

W-FF Alphas of All Countries and All ex US

Quintile Portfolio Returns (All Countries)

Cumulated 5-1 Monthly Returns

Idiosyncratic Volatility Strategies

	Alpha	MKT ^w	SMB ^w	HML ^w
US (VOL ^{US})	-1.952 [-5.59]	0.733	1.307	-0.311
Europe	-0.723 [-3.01]	0.456	0.433	0.004
G7 ex US	-0.723 [-2.77]	0.432	0.618	-0.087
All ex US	-0.67 [-3.16]	0.428	0.597	-0.05

Idiosyncratic Volatility Strategies

						Corr with
	Alpha	MKT ^w	SMB ^W	HML ^w	VOL ^{US}	VOL ^{US}
Europe	0.134				0.370	0.65
	[0.63]					
G7 ex US	0.176				0.360	0.61
	[0.77]					
All ex US	0.148				0.348	0.63
	[0.71]					
Europe	-0.104	0.223	0.018	0.103	0.317	
	[-0.46]					
G7 ex US	-0.245	0.279	0.346	-0.023	0.208	
	[-1.04]					
All ex US	-0.283	0.283	0.338	0.012	0.198	
	[-1.34]					

Columbia Business School

Further Investigation with US Data

- Idiosyncratic volatility effect is strongest in the US
- Longer time-series data (1963-2003) allows for greater power
- More detailed data on trading costs and other stock characteristics

- Very robust
 - Size and value factor loadings and characteristics
 - Only NYSE stocks/Size quintiles
 - Momentum (past 1, 3, 6, 12 month controls)
 - -Volume, turnover, bid-ask spreads
 - Liquidity (Pastor and Stambaugh, 2003)
 - Coskewness risk (Harvey and Siddique, 2000) and skewness
 - Analyst Coverage
 - Dispersion in Analysts' Forecasts

- Institutional Ownership
- Exposure to systematic volatility risk
- Persists for holding periods up to at least one year
- Exists in each decade; across NBER recessions and expansions; stable and volatile periods
- Exposure to private information (Easley, Hvidkjaer and O'Hara, 2002)
- Transactions costs
- Delay (Hou and Moskowitz, 2005)

σ(t-1,t)	-1.117	-1.023	-1.767	-0.789	-0.759	-0.937	-1.813
	[-3.24]	[-4.76]	[-5.02]	[-2.31]	[-2.96]	[-4.17]	[-4.27]
PIN	0.351						
Transaction Costs		-0.459					-1.654
Analyst Coverage			0.012				0.026
Institutions				0.004			0.001
Delay					-0.099		0.723
Skewness						-0.148	0.048

- Johnson (2004) proposes that since equity is a call option, leverage causes expected returns to decrease as idiosyncratic volatility decreases
- This is because an option delta $(\partial P / \partial S)$ where P = equity price and S = price of an unlevered claim on the firm's assets is decreasing in volatility
- In Johnson's model, total stock volatility comprises underlying asset volatility as well as the variance of uncertainty of firm assets (dispersion of analysts' forecasts)
- Thus, controlling for leverage should explain the idiosyncratic volatility effect

• Fama-MacBeth regressions

σ(t-1,t)	-0.935	-1.135
	[-2.24]	[-4.45]
Leverage		-0.921
Leverage x σ(t-1,t)		1.585

 Idiosyncratic volatility portfolios controlling for leverage FF Alphas of quintile portfolios:

1 Low	2	3	4	5 High	5-1
0.132	0.086	-0.006	-0.455	-1.113	-1.265
					[-7.25]

Idiosyncratic Volatility and Conditional Volatility

- Idiosyncratic volatility exhibits strong cross-sectional persistence and is highly correlated with conditional volatility. In fact, a good instrument to predict future idiosyncratic volatility is past idiosyncratic volatility.
- Construct cross-sectional forecasts of future idiosyncratic volatility using lagged idiosyncratic volatility, size, book-tomarket ratio, past returns, skewness, and turnover as characteristics

	1 Low	2	3	4	5 High	5-1
1 Low E _t [σ(t,t+1)]	0.069	0.064	0.089	0.079	-0.070	-0.139
2	0.349	0.346	0.161	0.231	-0.089	-0.438
3	0.586	0.520	0.242	-0.007	-0.511	-1.097
4	0.638	0.183	0.028	-0.442	-0.880	-1.518
5 High E _t [σ(t,t+1)]	0.484	-0.617	-1.021	-1.487	-1.691	-2.175

σ (t-1,t) Rankings

Controlling for E_t[σ (t,t+1)] 0.425 0.099 -0.100 -0.325 -0.648 -1.073

- Around the world, stocks with high idiosyncratic volatility tend to have low returns
- Across 23 countries, the difference in average returns between extreme quintile portfolios sorted on idiosyncratic volatility is -1.31% per month adjusted for world market, size, and value factors
- There is large comovement in the low returns of high idiosyncratic stocks across countries and the effect is largely captured by trading just U.S. stocks with high idiosyncratic volatility
- The U.S. idiosyncratic volatility effect is very robust